Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
6th Edition
ISBN: 9780321914620
Author: Jeffrey O. Bennett, William L. Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.B, Problem 81E
Blu-ray Geometry. The capacity of a single-sided, dual-layer Blu-ray Disc is approximately 50 billion bytes. The inner and outer radii that define the storage region of a Blu-ray Disc are r = 2.5cm and R = 5.9cm, respectively.
- What is the area of the storage region in cm2?
- What is the density of the data on a Blu-ray Disc in millions of bytes/cm2? A Blu-ray Disc consists of a single long track or “groove’ that spirals outward from the inner edge to the outer edge of the storage region. The width of each turn of the spiral (essentially the thickness of the groove) is d = 0.3 micrometers ( 1 micrometer = 10-6 meter). It can be shown that the length of the entire groove is approximately
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Need help with question?
Need help with question?
Refer to page 15 for a problem involving evaluating a double integral in polar coordinates.
Instructions: Convert the given Cartesian integral to polar coordinates. Show all transformations
and step-by-step calculations.
Link
[https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]
Chapter 10 Solutions
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Ch. 10.A - Prob. 1QQCh. 10.A - Prob. 2QQCh. 10.A - An acute angle is a. less than 90°. b. exactly...Ch. 10.A - 4. A regular polygon always has
a. four sides. b....Ch. 10.A - 5. A right triangle always has
three equal-length...Ch. 10.A - 6. The circumference of a circle of radius r...Ch. 10.A - The volume of a sphere of radius r is a. \[\pi...Ch. 10.A - Prob. 8QQCh. 10.A - If you triple the radius of a sphere, the volume...Ch. 10.A - Suppose you cut a large stone block into four...
Ch. 10.A - What do we mean by Euclidean geometry?Ch. 10.A - Prob. 2ECh. 10.A - What do we mean by dimension? How is dimension...Ch. 10.A - Prob. 4ECh. 10.A - What is plane geometry? What does it mean for...Ch. 10.A - 6. What is a polygon? How do we measure the...Ch. 10.A - What are the formulas for the circumference and...Ch. 10.A - 8. Describe how we calculate the volumes and...Ch. 10.A - What are the scaling laws for area and volume?...Ch. 10.A - Prob. 10ECh. 10.A - Prob. 11ECh. 10.A - Prob. 12ECh. 10.A - My bedroom is a rectangular prism that measures 12...Ch. 10.A - walked around the circular pond to a point on the...Ch. 10.A - Prob. 15ECh. 10.A - 16. By building a fence across my rectangular...Ch. 10.A - Prob. 17ECh. 10.A - Prob. 18ECh. 10.A - Angles and Circles. Find the degree measure of the...Ch. 10.A - 17-22: Angles and Circles. Find the degree measure...Ch. 10.A - 17-22: Angles and Circles. Find the degree measure...Ch. 10.A - 17-22: Angles and Circles. Find the degree measure...Ch. 10.A - Prob. 23ECh. 10.A - Prob. 24ECh. 10.A - Prob. 25ECh. 10.A - Prob. 26ECh. 10.A - Prob. 27ECh. 10.A - Prob. 28ECh. 10.A - Prob. 29ECh. 10.A - Prob. 30ECh. 10.A - Prob. 31ECh. 10.A - Prob. 32ECh. 10.A - Circle Practice. Find the circumference and area...Ch. 10.A - Prob. 34ECh. 10.A - Circle Practice. Find the circumference and area...Ch. 10.A - Prob. 36ECh. 10.A - Prob. 37ECh. 10.A - Prob. 38ECh. 10.A - Perimeters and Areas. Use Table 10.2 to find the...Ch. 10.A - Prob. 40ECh. 10.A - Prob. 41ECh. 10.A - Prob. 42ECh. 10.A - Triangle Geometry. Find the perimeter and area of...Ch. 10.A - Prob. 44ECh. 10.A - 43-46: Triangle Geometry. Find the perimeter and...Ch. 10.A - 43-46: Triangle Geometry. Find the perimeter and...Ch. 10.A - Window Space. A picture window has a length of 8...Ch. 10.A - A Running Track. A running track has straight legs...Ch. 10.A - Building Stairs. Refer to Figure 10.14, showing...Ch. 10.A - No Calculation Required. The end views of two...Ch. 10.A - Parking Lot. A parking lot is shaped like a...Ch. 10.A - Prob. 52ECh. 10.A - Prob. 53ECh. 10.A - Prob. 54ECh. 10.A - Three-Dimensional Objects. Use the formulas in...Ch. 10.A - Prob. 56ECh. 10.A - Prob. 57ECh. 10.A - 58. Water Canal. A water canal has a rectangular...Ch. 10.A - 59. Water Reservoir. The water reservoir for a...Ch. 10.A - 60. Oil Drums. Which holds more: an oil drum with...Ch. 10.A - Prob. 61ECh. 10.A - Architectural Model. Suppose you build an...Ch. 10.A - Architectural Model: Suppose you build an...Ch. 10.A - Prob. 64ECh. 10.A - Architectural Model: Suppose you build an...Ch. 10.A - Prob. 66ECh. 10.A - Architectural Model: Suppose you build an...Ch. 10.A - Prob. 68ECh. 10.A - Quadrupling Your Size. Suppose you magically...Ch. 10.A - Quadrupling Your Size. Suppose you magically...Ch. 10.A - Quadrupling Your Size. Suppose you magically...Ch. 10.A - 72-74: Comparing People. Consider a person named...Ch. 10.A - 72-74: Comparing People. Consider a person named...Ch. 10.A - Prob. 74ECh. 10.A - Squirrels or People? Squirrels and humans are both...Ch. 10.A - 75-76: Squirrels or People? Squirrels and humans...Ch. 10.A - Prob. 77ECh. 10.A - Prob. 78ECh. 10.A - Comparing Balls. Consider a softball with a radius...Ch. 10.A - Prob. 80ECh. 10.A - Dimension. Examine a closed book. How many...Ch. 10.A - Perpendicular and Parallel. Suppose you mark a...Ch. 10.A - Perpendicular and Parallel. Suppose you draw two...Ch. 10.A - Backyard. Figure 10.25 shows the layout of a...Ch. 10.A - Human Lung. The human lung has approximately 300...Ch. 10.A - 86. Automobile Engine Capacity. The size of a car...Ch. 10.A - Prob. 87ECh. 10.A - Prob. 88ECh. 10.A - Prob. 89ECh. 10.A - Prob. 90ECh. 10.A - The Geometry of Ancient Cultures. Research the use...Ch. 10.A - Surveying and GIS. Surveying is one of the oldest...Ch. 10.A - Platonic Solids. Why are there five and only five...Ch. 10.B - The number of minutes of are in a full circle is...Ch. 10.B - Prob. 2QQCh. 10.B - If you travel due east, you are traveling along a...Ch. 10.B - 4. If you are located at latitude 30°S and...Ch. 10.B - What would be different about the Sun if you...Ch. 10.B - Prob. 6QQCh. 10.B - If you are bicycling eastward up a hill with a 10%...Ch. 10.B - Prob. 8QQCh. 10.B - Prob. 9QQCh. 10.B - Prob. 10QQCh. 10.B - How do we describe fractions of a degree of angle?Ch. 10.B - Prob. 2ECh. 10.B - How is angular size related to physical size?Ch. 10.B - Prob. 4ECh. 10.B - Give at least two examples of ways in which the...Ch. 10.B - Prob. 6ECh. 10.B - Give an example of a practical problem that can be...Ch. 10.B - 8. What is an optimization problem? Give an...Ch. 10.B - 9. In December, it is winter at 70oW and 44oS.
Ch. 10.B - Prob. 10ECh. 10.B - Prob. 11ECh. 10.B - Prob. 12ECh. 10.B - Prob. 13ECh. 10.B - Prob. 14ECh. 10.B - Angle Conversions I. Convert the given degree...Ch. 10.B - 15-20: Angle Conversions I. Convert the given...Ch. 10.B - Prob. 17ECh. 10.B - Prob. 18ECh. 10.B - Prob. 19ECh. 10.B - Angle Conversions I. Convert the given degree...Ch. 10.B - 21-26: Angle Conversions II. Convert the given...Ch. 10.B - 21-26: Angle Conversions II. Convert the given...Ch. 10.B - Prob. 23ECh. 10.B - Prob. 24ECh. 10.B - Angle Conversions II. Convert the given angle...Ch. 10.B - Prob. 26ECh. 10.B - Prob. 27ECh. 10.B - Prob. 28ECh. 10.B - Prob. 29ECh. 10.B - Prob. 30ECh. 10.B - Prob. 31ECh. 10.B - Prob. 32ECh. 10.B - Prob. 33ECh. 10.B - Prob. 34ECh. 10.B - Prob. 35ECh. 10.B - Prob. 36ECh. 10.B - Angular Size. Use the formula relating angular...Ch. 10.B - Angular Size. Use the formula relating angular...Ch. 10.B - Angular Size. Use the formula relating angular...Ch. 10.B - Prob. 40ECh. 10.B - Prob. 41ECh. 10.B - Prob. 42ECh. 10.B - Prob. 43ECh. 10.B - Prob. 44ECh. 10.B - Prob. 45ECh. 10.B - 46. Grade of a Road. How much does a road with a...Ch. 10.B - 47. Pitch of a Roof. What is the angle (relative...Ch. 10.B - Grade of a Path. What is the approximate grade...Ch. 10.B - Prob. 49ECh. 10.B - Grade of a Trail. How much does a trail with a 22%...Ch. 10.B - Map Distances. Refer to the map in Figure 10.37....Ch. 10.B - Prob. 52ECh. 10.B - Prob. 53ECh. 10.B - Prob. 54ECh. 10.B - Prob. 55ECh. 10.B - Map Distances. Refer to the map in Figure 10.37....Ch. 10.B - Prob. 57ECh. 10.B - Prob. 58ECh. 10.B - 57-60: Acreage Problems. Refer to Figure 10.31,...Ch. 10.B - Acreage Problems. Refer to Figure 10.31, but use...Ch. 10.B - 61-64: Determining Similarity. Determine which...Ch. 10.B - Prob. 62ECh. 10.B - Prob. 63ECh. 10.B - Prob. 64ECh. 10.B - Prob. 65ECh. 10.B - Analyzing Similar Triangles. Determine the lengths...Ch. 10.B - Analyzing Similar Triangles. Determine the lengths...Ch. 10.B - Prob. 68ECh. 10.B - Solar Access. Assume that the policy given In...Ch. 10.B - Solar Access. Assume that the policy given In...Ch. 10.B - Solar Access. Assume that the policy given in...Ch. 10.B - Solar Access. Assume that the policy given in...Ch. 10.B - Prob. 73ECh. 10.B - Prob. 74ECh. 10.B - Prob. 75ECh. 10.B - Prob. 76ECh. 10.B - Prob. 77ECh. 10.B - Designing Plastic Buckets. A company manufactures...Ch. 10.B - Designing Cardboard Boxes. Suppose you are...Ch. 10.B - Designing Steel Safes. A large steel sale with a...Ch. 10.B - Blu-ray Geometry. The capacity of a single-sided,...Ch. 10.B - Prob. 82ECh. 10.B - Prob. 83ECh. 10.B - Prob. 84ECh. 10.B - Prob. 85ECh. 10.B - Prob. 86ECh. 10.B - Prob. 87ECh. 10.B - Filling a Pool. A spherical water tank has a...Ch. 10.B - Prob. 89ECh. 10.B - Prob. 90ECh. 10.B - Prob. 91ECh. 10.B - 92. Estimating Heights. In trying in estimate the...Ch. 10.B - 93. Soda Can Design. Standard soft drink cans hold...Ch. 10.B - 94. Melting Ice. A glaciers surface is...Ch. 10.B - Prob. 95ECh. 10.B - Prob. 96ECh. 10.B - Prob. 97ECh. 10.B - Prob. 98ECh. 10.B - Prob. 99ECh. 10.C - Fractal geometry is useful because it is the only...Ch. 10.C - Prob. 2QQCh. 10.C - Prob. 3QQCh. 10.C - Which of the following is a general characteristic...Ch. 10.C - How do fractal dimensions differ from in Euclidean...Ch. 10.C - 6. An island coastline has a fractal dimension...Ch. 10.C - Prob. 7QQCh. 10.C - Prob. 8QQCh. 10.C - Prob. 9QQCh. 10.C - Prob. 10QQCh. 10.C - Prob. 1ECh. 10.C - Prob. 2ECh. 10.C - Explain the meaning of the factors R and N used in...Ch. 10.C - What is the snowflake curve? Explain why we cannot...Ch. 10.C - Prob. 5ECh. 10.C - Prob. 6ECh. 10.C - Briefly describe what we mean by the process of...Ch. 10.C - 8. What is random iteration? Why do objects...Ch. 10.C - 9. I can use a yardstick to find the area of my...Ch. 10.C - I can use a yardstick to measure the length of the...Ch. 10.C - The area of the snowflake island is given by its...Ch. 10.C - Prob. 12ECh. 10.C - The edge of this leaf has a fractal dimension of...Ch. 10.C - This entire leaf, riddled with holes, has a...Ch. 10.C - Prob. 15ECh. 10.C - Prob. 16ECh. 10.C - Prob. 17ECh. 10.C - Prob. 18ECh. 10.C - Prob. 19ECh. 10.C - Prob. 20ECh. 10.C - 15-26: Ordinary and Fractal Dimensions. Find the...Ch. 10.C - 15-26: Ordinary and Fractal Dimensions. Find the...Ch. 10.C - 15-26: Ordinary and Fractal Dimensions. Find the...Ch. 10.C - Prob. 24ECh. 10.C - Prob. 25ECh. 10.C - Prob. 26ECh. 10.C - Prob. 27ECh. 10.C - Prob. 28ECh. 10.C - Prob. 29ECh. 10.C - Prob. 30ECh. 10.C - Prob. 31ECh. 10.C - Prob. 32ECh. 10.C - Prob. 33ECh. 10.C - Fractal Research. Locate at least two websites...Ch. 10.C - 35. Fractal Art. Visit a website that features...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Refer to page 9 for a problem requiring finding the tangent plane to a given surface at a point. Instructions: Use partial derivatives to calculate the equation of the tangent plane. Show all calculations step-by-step. Link [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 8 for a problem involving solving a second-order linear homogeneous differential equation. Instructions: Solve using characteristic equations. Show all intermediate steps leading to the general solution. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 17 for a problem requiring solving a nonlinear algebraic equation using the bisection method. Instructions: Show iterative calculations for each step, ensuring convergence criteria are satisfied. Clearly outline all steps. Link [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward
- Problem: The probability density function of a random variable is given by the exponential distribution Find the probability that f(x) = {0.55e−0.55x 0 < x, O elsewhere} a. the time to observe a particle is more than 200 microseconds. b. the time to observe a particle is less than 10 microseconds.arrow_forwardThe OU process studied in the previous problem is a common model for interest rates. Another common model is the CIR model, which solves the SDE: dX₁ = (a = X₁) dt + σ √X+dWt, - under the condition Xoxo. We cannot solve this SDE explicitly. = (a) Use the Brownian trajectory simulated in part (a) of Problem 1, and the Euler scheme to simulate a trajectory of the CIR process. On a graph, represent both the trajectory of the OU process and the trajectory of the CIR process for the same Brownian path. (b) Repeat the simulation of the CIR process above M times (M large), for a large value of T, and use the result to estimate the long-term expectation and variance of the CIR process. How do they compare to the ones of the OU process? Numerical application: T = 10, N = 500, a = 0.04, x0 = 0.05, σ = 0.01, M = 1000. 1 (c) If you use larger values than above for the parameters, such as the ones in Problem 1, you may encounter errors when implementing the Euler scheme for CIR. Explain why.arrow_forwardRefer to page 1 for a problem involving proving the distributive property of matrix multiplication. Instructions: Provide a detailed proof using matrix definitions and element-wise operations. Show all calculations clearly. Link [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forward
- Refer to page 30 for a problem requiring solving a nonhomogeneous differential equation using the method of undetermined coefficients. Instructions: Solve step-by-step, including the complementary and particular solutions. Clearly justify each step. Link [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 5 for a problem requiring finding the critical points of a multivariable function. Instructions: Use partial derivatives and the second partial derivative test to classify the critical points. Provide detailed calculations. Link [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 3 for a problem on evaluating limits involving indeterminate forms using L'Hôpital's rule. Instructions: Apply L'Hôpital's rule rigorously. Show all derivatives and justify the steps leading to the solution. Link [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward
- 3. Let {X} be an autoregressive process of order one, usually written as AR(1). (a) Write down an equation defining X₁ in terms of an autoregression coefficient a and a white noise process {} with variance σ². Explain what the phrase "{} is a white noise process with variance o?" means. (b) Derive expressions for the variance 70 and the autocorrelation function Pk, k 0,1,. of the {X} in terms of o2 and a. Use these expressions to suggest an estimate of a in terms of the sample autocor- relations {k}. (c) Suppose that only every second value of X is observed, resulting in a time series Y X2, t = 1, 2,.... Show that {Y} forms an AR(1) process. Find its autoregression coefficient, say d', and the variance of the underlying white noise process, in terms of a and o². (d) Given a time series data set X1, ..., X256 with sample mean = 9.23 and sample autocorrelations ₁ = -0.6, 2 = 0.36, 3 = -0.22, p = 0.13, 5 = -0.08, estimate the autoregression coefficients a and a' of {X} and {Y}.arrow_forward#8 (a) Find the equation of the tangent line to y = √x+3 at x=6 (b) Find the differential dy at y = √x +3 and evaluate it for x=6 and dx = 0.3arrow_forwardRefer to page 96 for a problem involving the heat equation. Solve the PDE using the method of separation of variables. Derive the solution step-by-step, including the boundary conditions. Instructions: Stick to solving the heat equation. Show all intermediate steps, including separation of variables, solving for eigenvalues, and constructing the solution. Irrelevant explanations are not allowed. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Surface Area Of A Sphere | Geometry | Math | Letstute; Author: Let'stute;https://www.youtube.com/watch?v=T_DBkFnr4NM;License: Standard YouTube License, CC-BY