
A steam power plant operates on an ideal regenerative Rankine cycle with two open feedwater heaters. Steam enters the turbine at 8 MPa and 550°C and exhausts to the condenser at 15 kPa. Steam is extracted from the turbine at 0.6 and 0.2 MPa. Water leaves both feedwater heaters as a saturated liquid. The mass flow rate of steam through the boiler is 24 kg/s. Show the cycle on a T-s diagram, and determine (a) the net power output of the power plant and (b) the thermal efficiency of the cycle.
(a)

The power output of plant.
Answer to Problem 52P
The power output of the plant is
Explanation of Solution
Draw the schematic diagram of the given ideal regenerative Rankine cycle as shown in
Figure 1.
Draw the
Figure 2.
Here, water (steam) is the working fluid of the regenerative Rankine cycle. The cycle involves three pumps.
Write the formula for work done by the pump during process 1-2.
Here, the specific volume is
Write the formula for enthalpy
Write the formula for work done by the pump during process 3-4.
Here, the specific volume is
Write the formula for enthalpy
Write the formula for work done by the pump during process 5-6.
Here, the specific volume is
Write the formula for enthalpy
At state 9:
The steam expanded to the pressure of
The quality of water at the exit of the turbine (state 9) is expressed as follows.
The enthalpy at state 9 is expressed as follows.
Here, the enthalpy is
At state 10:
The steam enters the condenser at the pressure of
The quality of water at state 10 is expressed as follows.
The enthalpy at state 10 is expressed as follows.
Here, the subscript 10 indicates the process state 10.
Refer Figure 1 and 2.
Write the formula for heat in
Here, the mass fraction steam extracted from the turbine to the feed water entering the boiler via feed water heater-I
Write the general equation of energy balance equation.
Here, the rate of net energy inlet is
At steady state the rate of change of net energy of the system
Refer Equation (XIII).
Write the energy balance equation for open feed water heater-II.
Rewrite the Equation (XIV) in terms of mass fraction
Refer Equation (XIII).
Write the energy balance equation for open feed water heater-I.
Rewrite the Equation (XVI) in terms of mass fraction
Write the formula for net power output of the cycle per unit mass.
Write the formula for net power output of the cycle.
Here, the mass flow rate is
At state 1: (Pump I inlet)
The water exits the condenser as a saturated liquid at the pressure of
Refer Table A-5, “Saturated water-Pressure table”.
The enthalpy
At state 3: (Pump II inlet)
The water exits the open feed water heater-I as a saturated liquid at the pressure of
Refer Table A-5, “Saturated water-Pressure table”.
The enthalpy
At state 5: (Pump III inlet)
The water exits the open feed water heater-II as a saturated liquid at the pressure of
Refer Table A-5, “Saturated water-Pressure table”.
The enthalpy
At state 7:
The steam enters the turbine as superheated vapor.
Refer Table A-6, “Superheated water”.
The enthalpy
From Figure 2.
At state 8:
The steam expanded to the pressure of
Refer Table A-6, “Superheated water”.
The enthalpy
At state 9:
The steam expanded to the pressure of
Refer Table A-5, “Saturated water-Pressure table”.
Obtain the following properties corresponding to the pressure of
At state 10:
The steam enters the condenser at the pressure of
Refer Table A-5, “Saturated water-Pressure table”.
Obtain the following properties corresponding to the pressure of
Conclusion:
Substitute
Substitute
Substitute
Equation (III).
Substitute
Substitute
Equation (V).
Substitute
From Figure 1.
Substitute
Substitute
Equation (VIII).
Substitute
Substitute
Equation (X).
Consider the open feed water heater-II alone.
Substitute
Consider the open feed water heater-I alone.
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the power output of the plant is
(b)

The thermal efficiency of the cycle.
Answer to Problem 52P
The thermal efficiency of the cycle is
Explanation of Solution
Write the formula for thermal efficiency of the cycle
Conclusion:
Substitute
Thus, the thermal efficiency of the cycle is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- Mechanical engineering question.arrow_forwardA shaft is loaded in bending and torsion such that Ma = 70 N·m, T₁ = 45 N · m, M = 55 N. m, and T = 35 N m. For the shaft, S₁ = 700 MPa and S = 560 MPa, and a fully corrected endurance limit of S₂ = 210 MPa is assumed. Let K = 2.2 and K = 1.8. With a Se design factor of 2.0 determine the minimum acceptable diameter of the shaft using the a) DE- Goodman b) DE-Morrow c) DE-Gerber d) DE-SWTarrow_forwardThe feed flow rate to an adiabatic continuous stirred tank reactor (CSTR) in which an exothermicreaction is occurring is increased from 1000 to 1400. kg/h, causing the outlet temperature to change as shown:a) Briefly explain on a physical basis why the temperature in this system oscillates after a step increasein the inlet flow rate. Be clear, complete, and concise. c) You know that this oscillating response cannot be that of two first order processes with real timeconstant acting in series. Assuming the reaction is first order and the CSTR operates with constant holdup,derive the block diagram with all transfer functions indicating how the temperature would respond to the feedflow rate step change (W’(s) as input and T’(s) as output). An intermediate variable in this block diagram willbe the concentration of A in the reactor, represented by CA’(s). d) A correct result for part c) will include a feedback loop in the block diagram, indicating the responsein T to a change in w is not…arrow_forward
- Spur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearingarrow_forwardProblem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forwardAn aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forward
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





