Mathematical Methods in the Physical Sciences
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.9, Problem 19P

Use equations (9.2), (9.8) and (9.11) to evaluate the following expressions

In spherical coordinates, × r e θ , ( r cos θ ) , r .

Blurred answer
Students have asked these similar questions
1. 2. Show that the following are not logically equivalent by finding a counterexample: (p^q) →r and (db) V (d←d) Show that the following is not a contradiction by finding a counterexample: (pV-q) AqA (pv¬q Vr) 3. Here is a purported proof that (pq) ^ (q → p) = F: (db) v (bd) = (db) v (bd) =(qVp) A (g→p) = (¬¬q V ¬p) ^ (q→ p) (db) V (db) = =¬(a→p)^(a→p) = (gp) ^¬(a → p) =F (a) Show that (pq) ^ (q→p) and F are not logically equivalent by finding a counterex- ample. (b) Identify the error(s) in this proof and justify why they are errors. Justify the other steps with their corresponding laws of propositional logic.
Question 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Hint for the first part of question 2: To assist you with filling out the table in the first part of the question,…
5 Show by multiplying matrices that the following equation represents an ellipse: 5 - -7 I (x)(3)()=30. y) 7 7)

Chapter 10 Solutions

Mathematical Methods in the Physical Sciences

Ch. 10.3 - As we did in (3.3), show that the contracted...Ch. 10.3 - Show that the contracted tensor TijkVk is a 2nd...Ch. 10.3 - Show that TijklmSlm is a tensor and find its rank...Ch. 10.3 - Show that the sum of two 3rd -rank tensors is a...Ch. 10.3 - As in problem 6, show that the sum of two 2nd...Ch. 10.3 - Show that (3.9) follows from (3.8). Hint: Give a...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Prove the quotient rule in each of the following...Ch. 10.3 - Show that the first parenthesis in (3.5) is a...Ch. 10.4 - As in (4.3) and (4.4), find the y and z components...Ch. 10.4 - Complete Example 4 to verify the rest of the...Ch. 10.4 - As in Problem 2, complete Example 5.Ch. 10.4 - Find the inertia tensor about the origin for a...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.4 - For the mass distributions in Problems 5 to 7,...Ch. 10.5 - Verify that (5.5) agrees with a Laplace...Ch. 10.5 - Verify for a few representative cases that (5.6)...Ch. 10.5 - Show that ijklm is an isotropic tensor of rank...Ch. 10.5 - Generalize Problem 3 to see that the direct...Ch. 10.5 - Let Tjkmn be the tensor in (5.8). This is a...Ch. 10.5 - Evaluate: (a) ijjkkmim (b) ijkjk (c) jk2k2j (d)...Ch. 10.5 - Write in terms of s as in (5.8) and (5.9): (a)...Ch. 10.5 - Show that the equations (5.10) are correct. Hints:...Ch. 10.5 - (a) Finish the work of showing that the cross...Ch. 10.5 - (a) Write the triple scalar product A(BC) in...Ch. 10.5 - Using problem 10, write A(BA) in tensor notation...Ch. 10.5 - Write and prove in tensor notation: (a) Chapter 6,...Ch. 10.5 - Write in tensor notation and prove the following...Ch. 10.5 - Show that the diagonal elements of an...Ch. 10.5 - Write a 4-by-4 antisymmetric matrix to show that...Ch. 10.5 - Verify that (5.16) gives (5.17). Also verify that...Ch. 10.5 - Write out the components of Tjk=AjBkAkBj to show...Ch. 10.6 - Show that in 2 dimension (say the x, y plane), an...Ch. 10.6 - In Chapter 3, we said that any 3-by-3 orthogonal...Ch. 10.6 - For Example 1, write out the components of U,V,...Ch. 10.6 - Do Example 1 and Problem 3 if the transformation...Ch. 10.6 - Write the tensor transformation equations for...Ch. 10.6 - Prob. 6PCh. 10.6 - Write the transformation equations for the triple...Ch. 10.6 - Write the transformation equations for WS to...Ch. 10.6 - Prob. 9PCh. 10.6 - Prob. 10PCh. 10.6 - Prob. 11PCh. 10.6 - Prob. 12PCh. 10.6 - Prob. 13PCh. 10.6 - Prob. 14PCh. 10.6 - In equation (5.12), find whether A(BC) is a vector...Ch. 10.6 - In equation (5.14), is (V) a vector or a...Ch. 10.6 - In equation (5.16), show that if Tjk is a tensor...Ch. 10.7 - Verify (7.1).Hints: In Figure 7.1, consider the...Ch. 10.7 - Write out the sums Pijej for each value of i and...Ch. 10.7 - Carry through the details of getting (7.4) from...Ch. 10.7 - Interpret the elements of the matrices in Chapter...Ch. 10.7 - Show by the quotient rule (Section 3) that Cijkm...Ch. 10.7 - If P and S are 2nd-rank tensors, show that 92=81...Ch. 10.7 - In (7.9) we have written the first row of elements...Ch. 10.7 - Do Problem 4.8 in tensor notation and compare the...Ch. 10.8 - Find ds2 in spherical coordinates by the method...Ch. 10.8 - Observe that a simpler way to find the velocity...Ch. 10.8 - Prob. 3PCh. 10.8 - In the text and problems so far, we have found the...Ch. 10.8 - Prob. 5PCh. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - As in Problem 1, find ds2, the scale factors, the...Ch. 10.8 - Sketch or computer plot the coordinate surfaces in...Ch. 10.8 - Prob. 11PCh. 10.8 - Using the expression you have found for ds, and...Ch. 10.8 - Prob. 13PCh. 10.8 - Using the expression you have found for ds, and...Ch. 10.8 - Let x=u+v,y=v. Find ds, thea vectors, and ds2 for...Ch. 10.9 - Prove (9.4) in the following way. Using (9.2) with...Ch. 10.9 - Prob. 2PCh. 10.9 - Using cylindrical coordinates write the Lagrange...Ch. 10.9 - Prob. 4PCh. 10.9 - Write out U,V,2U, and V in spherical coordinates.Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 3 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Do Problem 5 for the coordinate systems indicated...Ch. 10.9 - Prob. 14PCh. 10.9 - Prob. 15PCh. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.18) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8) and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.9 - Use equations (9.2), (9.8), and (9.11) to evaluate...Ch. 10.10 - Verify equation (10.7). Hint: Use equations (2.4)...Ch. 10.10 - From (10.1) find /x=(1/r)coscos and show that...Ch. 10.10 - Divide equation (10.4) by dt to show that the...Ch. 10.10 - Prob. 4PCh. 10.10 - Write u in polar coordinates in terms of its...Ch. 10.10 - Prob. 6PCh. 10.10 - As in (10.12), write the transformation equations...Ch. 10.10 - Using (10.15) show that gij is a 2nd-rank...Ch. 10.10 - If Ui is a contravariant vector and Vj is a...Ch. 10.10 - Show that if Vi is a contravariant vector then...Ch. 10.10 - In (10.18), show by raising and lowering indices...Ch. 10.10 - Show that in a general coordinate system with...Ch. 10.10 - Verify (10.20).Ch. 10.10 - Using equations (10.20) to (10.23), write the...Ch. 10.10 - Do Problem 14 for an orthogonal coordinate system...Ch. 10.10 - Continue Problem 8.15 to find the gij matrix and...Ch. 10.10 - Repeat Problems 8.15 and 10.16 above for the (u,v)...Ch. 10.10 - Using (10.19), show that aiai=ji.Ch. 10.11 - Show that the transformation equation for a...Ch. 10.11 - Let e1,e2,e3 be a set of orthogonal unit vectors...Ch. 10.11 - In Chapter 3, Problem 6.6, you are asked to prove...Ch. 10.11 - If E= electric field and B= magnetic field, is EB...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - Do Problems 5 to 8 for the (u,v) coordinate system...Ch. 10.11 - If u is a vector specifying the displacement under...Ch. 10.11 - Show that elements Rij of a rotation matrix are...Ch. 10.11 - Show that the nine quantities Tij=Vi/xj (which are...Ch. 10.11 - The square matrix in equation (10.3) is called the...Ch. 10.11 - In equation (10.13) let the x variables be...

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Introduction to Triple Integrals; Author: Mathispower4u;https://www.youtube.com/watch?v=CPR0ZD0IYVE;License: Standard YouTube License, CC-BY