Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
Question
Book Icon
Chapter 10.7, Problem 6E
Interpretation Introduction

Interpretation:

Let f(x, r) = r – x2 , compare αf2(x/α, R1) to α2 f4(x/α2, R2)  and match the coefficients of the lowest powers of x. determine value of α.

Concept Introduction:

  • Obtain the expression for αf2(x/α, R1)  from the given function.

  • Obtain the expression for α2 f4(x/α2, R2)  from the given function.

  • Compare the lowest power and determine α

Expert Solution & Answer
Check Mark

Answer to Problem 6E

Solution:

By comparing αf2(x/α, R1) and α2 f4(x/α2, R2)  the coefficients of the lowest powers of x is matched and value of α = -1.66499 is determined.

Explanation of Solution

First we introduce some notation. Let f(x, r)  denote a unimodal map that undergoes a period-doubling route to chaos as r increases, and suppose that xm is the maximum. Let rn denote the value of r at which a 2n- cycle is born, and let Rn denote the value of r at which the 2n- cycle is superstable.

For the given equation,

f(x, r) = r – x2 

For the expression provided for map, R0 will be stable point. As R0 has a super stable fixed point, therefore from the definition of the super stable fixed point,

x&*#x00A0;= R0 –(x*)2 

The superstability condition is

λ =(ƒ x)x=x*=0

Differentiating the given equation

(ƒ x)=(R0 –(x)2) x=- 2x

Hence we must have fixed point x&*#x00A0;= 0.

Substituting x&*#x00A0;= 0 into the fixed point condition yields R0= 0 .

Hence R0= 0 .

At point R1 the map has a superstable 2- cycle. Let and q denote the points of the cycle.

The condition for super stability is depends on multiplier factor,

λ =(–2p)(–2q) = 0 

λ = 0 

So the point x = 0 must be one of the points in the 2- cycle.

Form the given function f(x, r) = r – x2 , by substituting x = 0 and r = R1. Then the period -2 condition to get the value of the R1

f2(0,R1) = 0 

f(f(0,R1)) = 0 

f((R1-(0)2),R1) = 0 

Hence solving further,

R1(R1-(0)2)2 = 0 

R1(R1)2 = 0 

R1(1R1) = 0 

R1= 0 and R1= 1 

R1= 0 is a fixed point and two cycle value is R1= 1 .

Similarly, for 3-cycle, we will apply period 3 condition to get value of the value of R2 

f4(0,R2) = 0 

f(f(f(f(0,R1)))) = 0 

f(f(f(R2-(0)2,R2))) = 0 

f(f(R2-(R2-(0)2)2, R2)) = 0 

f(R2(R2-(R2-(0)2)2)2, R2) = 0 

R2(R2(R2(R2-(0)2)2)2)2 = 0 

Hence solving further,

R2= 0 is fixed point.

R2= 1.3107 is 3- cycle point

R2= 1.94079

and remaining are complex roots. Now from the given system equation f(x, r) = r – x2 , By substituting r = R1

f(x, R1) = (R1)2 – x2 

By substituting R1=1

f(x, R1) = (1)2 – x2 

Considering the given explicit function, αf2(x/α, R1) 

αf2(x/α, R1) = αf(f(x/α, R1))

By substituting R1=1

αf2(x/α, 1) = αf(f(x/α, 1))

αf2(x/α, 1) = αf(1-(x/α)2,1)

αf2(x/α, 1) = α(1(1-(x/α)2)2)

Hence solving further,

αf2(x/α, 1) = α(1(1-(x/α)2)2)

αf2(xα, 1) = α(1-(1+x4α42 x2α2))

αf2(xα, 1) = α(1 - 1- x4α4+2 x2α2)

αf2(xα, 1) = α(2 x2α2x4α4)

αf2(xα, 1) = 2 x2αx4α3

Similarly the given function for R2, f(x, R2) = (R2)2 – x2 

By substituting R2= 1.3107

f(x, R2) = (1.3107)2 – x2 

f(x, R2) = 1.71793449 – x2 

f(x, R2) = 1.718 – x2 

Considering the given explicit function, α2 f4(x/α2, R2), By substituting R2= 1.718

α2 f4(x/α2, R2) = α2f(f(f(1.78 - (xα2)2,1.78))) 

α2 f4(x/α2, R2) = α2f(f(1.78(1.78 - (xα2)2)2,1.78)) 

α2 f4(x/α2, R2) = α2f(1.78-(1.78((1.78 - (xα2)2)2)2,1.78)) 

α2 f4(x/α2, R2) = α2(1.78(1.78-(1.78(1.78 - (xα2)2)2)2)2 )

Hence solving further,

α2 f4(x/α2, R2) = (1.67942α2x16α30+(13.744)x14α26(75.7707)x16α22+(213.124)x10α18(319.835)x8α14(239.281)x6α10+(66.2487)x4α6(3.32999)x2α2)

Hence the given explicit function, αf2(x/α, R1) to α2 f4(x/α2, R2)  is

αf2(xα, 1) = 2 x2αx4α3

α2 f4(xα2, R2) = (1.67942α2x16α30+(13.744)x14α26(75.7707)x16α22+(213.124)x10α18(319.835)x8α14(239.281)x6α10+(66.2487)x4α6(3.32999)x2α2)

To determine value of α

By comparing the lowest power of αf2(xα, 1) and α2 f4(xα2, R2) is the term x2,

2 x2α = -(3.32999)x2α2

2 = -3.32999α

α = -3.329992

α = -1.66499

Therefore the value of α from the given two function is determined as α = -1.66499.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
6. Use the Linear Approximation to estimate Af for f(x) = when a = 3+x2 2 and Ax = - (Use decimal notation. Give your answer to five decimal places.) 2.81261 Af = Incorrect Compute the error and the percentage error. (Use decimal notation. Give your answer to four decimal places.) error: Incorrect (Use decimal notation. Give your answer to two decimal places.)
Discretize the function f(t) = cos(t) over the interval [0, 27] with step-size h 3 Sample points: t = Function: f = (You may use 'sqrt' in your answer, but not 'sin' or 'cos'.)
plees soll