Mechanics Of Materials, Si Edition
9th Edition
ISBN: 9789810694364
Author: Russell C Hibbeler
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.6, Problem 10.38P
The strain gage is placed on the surface of the steel boiler as shown. If it is 0.5 in. long, determine the pressure in the boiler when the gage elongates 0.2(103□) in. The boiler has a thickness of 0.5 in. and inner diameter of 60 in. Also, determine the maximum x, y in-plane shear strain in the material, Est=29(103) ksi, vst = 0.3.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The strain gauge is placed on the surface of a thin-
walled steel boiler as shown. If it is 0.5 in. long, determine
the pressure in the boiler when the gauge elongates
0.2(10 −3 ) in. The boiler has a thickness of 0.5 in. and inner
diameter of 60 in. Also, determine the maximum x , y in-plane
shear strain in the material. Est = 29(10 3 ) ksi, nst = 0.3.
Please show diagram.
The spherical pressure vessel has an inner diameter of 2 m and a thickness of 10 mm. A strain gage having a length of 20 mm is attached to it, and it is observed to increase in length by 0.012 mm when the vessel is pressurized. Determine the pressure causing this deformation, and find the maximum in-plane shear stress, and the absolute maximum shear stress at a point on theouter surface of the vessel. The material is steel, for which Est = 200 GPa and nst = 0.3.
Consider the given loading on a pipe. A rectangular rosette (45 degree apart) is placed on a point (K) which is located on the half length of the pipe as shown below. Note that the second gage (b) is parallel to the z-axis . When the load is applied, the strain gages read εa=80 µS, εb=60 µS, εc=20 µS. The pipe have an elastic modulus of Est=201 GPa.
a. Determine the in-plane principal strains and the principal strain directions for the given set of strains (Use Mohr circle)
Chapter 10 Solutions
Mechanics Of Materials, Si Edition
Ch. 10.3 - Prove that the sum of the normal strains in...Ch. 10.3 - The state of strain at the point on the arm has...Ch. 10.3 - Prob. 10.3PCh. 10.3 - Prob. 10.4PCh. 10.3 - 10-5. The state of strain at the point on the gear...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Use the strain transformation equations and...Ch. 10.3 - Prob. 10.8PCh. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Use the strain- transformation equations to...
Ch. 10.3 - 10–11. The state of strain on an element has...Ch. 10.3 - Determine the equivalent state of strain on an...Ch. 10.3 - Determine the equivalent state of strain which...Ch. 10.3 - Use the strain transformation equations to...Ch. 10.3 - Determine the equivalent state of strain, which...Ch. 10.3 - Prob. 10.17PCh. 10.3 - Prob. 10.18PCh. 10.3 - 10–19. Solve part (a) of Prob. 10–4 using Mohr’s...Ch. 10.3 - *10–20. Solve part (a) of Prob. 10–5 using Mohr’s...Ch. 10.3 - using Mohrs circle. 106. The state of strain at a...Ch. 10.5 - The strain at point A on the bracket has...Ch. 10.5 - Determine (a) the principal strains at A, (b) the...Ch. 10.5 - Prob. 10.24PCh. 10.5 - Prob. 10.25PCh. 10.5 - 10–26. The 60° strain rosette is attached to point...Ch. 10.5 - 10–27. The strain rosette is attached at the point...Ch. 10.5 - Prob. 10.28PCh. 10.6 - For the case of plane stress, show that Hookes law...Ch. 10.6 - to develop the strain tranformation equations....Ch. 10.6 - Determine the modulus of elasticity and Polssons...Ch. 10.6 - If it is subjected to an axial load of 15 N such...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - If it has the original dimensions shown, determine...Ch. 10.6 - A strain gage having a length of 20 mm Is attached...Ch. 10.6 - Determine the bulk modulus for each of the...Ch. 10.6 - The strain gage is placed on the surface of the...Ch. 10.6 - 10–39. The strain in the x direction at point A on...Ch. 10.6 - Determine the applied load P. What is the shear...Ch. 10.6 - If a load of P = 3 kip is applied to the A-36...Ch. 10.6 - The cube of aluminum is subjected to the three...Ch. 10.6 - Prob. 10.43PCh. 10.6 - *10–44. Strain gauge b is attached to the surface...Ch. 10.6 - Prob. 10.45PCh. 10.6 - 10?46. The principal strains in a plane, measured...Ch. 10.6 - 10–47. The principal stresses at a point are shown...Ch. 10.6 - *10–48. The 6061-T6 aluminum alloy plate fits...Ch. 10.6 - Determine the normal stresses x and y in the plate...Ch. 10.6 - The steel shaft has a radius of 15 mm. Determine...Ch. 10.6 - Prob. 10.51PCh. 10.6 - Prob. 10.52PCh. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Air is pumped into the steel thin-walled pressure...Ch. 10.6 - Prob. 10.55PCh. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - The thin-walled cylindrical pressure vessel of...Ch. 10.6 - Prob. 10.58PCh. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - A material is subjected to plane stress. Express...Ch. 10.7 - The yield stress for a zirconium-magnesium alloy...Ch. 10.7 - Solve Prob. 1061 using the maximum distortion...Ch. 10.7 - Prob. 10.63PCh. 10.7 - Prob. 10.64PCh. 10.7 - Prob. 10.65PCh. 10.7 - Prob. 10.66PCh. 10.7 - Prob. 10.67PCh. 10.7 - If the material is machine steel having a yield...Ch. 10.7 - The short concrete cylinder having a diameter of...Ch. 10.7 - 10–70. Derive an expression for an equivalent...Ch. 10.7 - Prob. 10.71PCh. 10.7 - Prob. 10.72PCh. 10.7 - If the 2-in diameter shaft is made from brittle...Ch. 10.7 - If the 2-in diameter shaft is made from cast iron...Ch. 10.7 - 10–75. The components of plane stress at a...Ch. 10.7 - Prob. 10.76PCh. 10.7 - 10–77. If the A-36 steel pipe has outer and inner...Ch. 10.7 - Prob. 10.78PCh. 10.7 - Prob. 10.79PCh. 10.7 - Prob. 10.80PCh. 10.7 - Prob. 10.81PCh. 10.7 - Prob. 10.82PCh. 10.7 - Prob. 10.83PCh. 10.7 - Prob. 10.84PCh. 10.7 - 10–85. The state of stress acting at a critical...Ch. 10.7 - The shaft consists of a solid segment AB and a...Ch. 10.7 - Prob. 10.87PCh. 10.7 - Prob. 10.88PCh. 10.7 - 10–89. The gas tank has an inner diameter of 1.50...Ch. 10.7 - The gas tank is made from A-36 steel and has an...Ch. 10.7 - The internal loadings at a critical section along...Ch. 10.7 - *10–92. The shaft consists of a solid segment AB...Ch. 10.7 - Prob. 10.93PCh. 10 - In the case of plane stress, where the in-plane...Ch. 10 - The plate is made of material having a modulus of...Ch. 10 - If the material is machine steel having a yield...Ch. 10 - Determine if yielding has occurred on the basis of...Ch. 10 - The 60 strain rosette is mounted on a beam. The...Ch. 10 - Use the strain transformation equations to...Ch. 10 - If the strain gages a and b at points give...Ch. 10 - Use the strain-transformation equations and...Ch. 10 - Use the strain transformation equations to...Ch. 10 - Specify the orientation of the corresponding...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to the Internet, an...
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Assume the following vectors are already defined: V1=[302]V2=[214]V3=[5131]V4=[0.50.10.20.2] For each of the fo...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Locate the centroid of the area. Prob. 9-17
Engineering Mechanics: Statics
Determine the velocity of block D if end A of the rope is pulled down with a speed of vA = 3 m/s.
Engineering Mechanics: Dynamics (14th Edition)
17–1C A high-speed aircraft is cruising in still air. How does the temperature of air at the nose of the aircra...
Thermodynamics: An Engineering Approach
What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, (c) 760 Mg?
Statics and Mechanics of Materials (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The strain at point A on the pressure-vessel wall has components Px = 480(10-6), Py = 720(10-6), gxy =650(10-6). Determine (a) the principal strains at A, in the x9y plane, (b) the maximum shear strain in the x9y plane, and (c) the absolute maximum shear strain.arrow_forwardTwo fully loaded tractor trailers travel over the bridge putting substantial loading on the structure. As they pass over the middle of the bridge, one of the vertical supporting pillars, which is fixed at its bottom, deforms as shown below. The weight of the trucks causes point T to move to point T'—a distance of 2.5 cm along the x-axis. If the pillar has an original height of 27 m , find the shear strain at point T.arrow_forwardAn air-filled rubber ball has a diameter of 150 mm. If the air pressure within it is increased until the ball’s diameter becomes 175 mm, determine the average normal strain in the rubber.arrow_forward
- PROBLEM 2: The retangular plate is deformed into the shape of a rhombus shown by the dashed line Deteminethe average shear strain at corner A with respect tothex and y axis. mm D 400 mm В A 14 mm - 300 mm-arrow_forward(a) Determine the shear strain at corner A if the plate distorts as shown by the dashed line. (b) Determine the average normal strain that occurs along the diagonal AC and DB. 5 mm 2 mm 4 mm 2 mm IB 300 mm $2 mm D A 400 mm 3 mmarrow_forwardThe strain components at a point in a body subjected to plane strain are E = 850μ, Ey = -300μ, and Yay 400μ. Determine the strain components En, Et, and Ynt at the point if the nt-axes are rotated with respect to the xy-axes as indicate below. = Y t $30% -X narrow_forward
- The strain components ɛ, Ey, and yy are given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 300 µe, ɛ, = -710 pe, Vxy = -440 urad. Enter the angle such that -45°s0,s +45°. Answer: Ep1= pe Ep2= με Ymax in-plane = prad Yabsolute max. prad Əp =arrow_forwardThe A-36 steel post is subjected to the forces shown. If the strain gages a and b at point A give readings of Pa = 300(10-6) and Pb = 175(10-6), determine the magnitudes of P1 and P2.arrow_forwardThe strain components E, Ey, and yyare given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0p, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 440 µE, ɛ, = -810 µE, Vxy = -540 µrad. Enter the angle such that -45°s0,s +45°. Answer: Ep1 = Ep2 = Ymax in-plane prad Yabsolute max. prad 0, =arrow_forward
- A rectangular aluminum plate of uniform thickness has a strain gauge at the center. It is placed in a test rig which can apply a biaxial force system along the edges of the plate as shown below. If the measured strains are +0.0005 and +0.001 in the x and y directions respectively, a) Determine the corresponding stresses set up in the plate and the strain through the thickness, εz. Take E=72 GPa and ν=0.32. b) Construct the Mohr’s circle for the loaded plate. c) State the values of the principal stresses. d) Determine the maximum shearing stresses and the directions of the planes on which they occur.arrow_forwardDetermine the distance that end A of the rigid bar moves downward, if end C moves upward by 0.06 in.arrow_forwardThe strain components ɛ Ey, and ywyare given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 0 µE, Ɛy = 330 µɛ, Yxy = 270 prad. Enter the angle such that -45° <0,s+45°. Answer: Ep1 = Ep2 = Ymax in-plane prad Yabsolute max. pradarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY