EBK MECHANICS OF MATERIALS
EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220102804487
Author: BEER
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10.4, Problem 106P
To determine

Find the thickness of the lightest tube.

Expert Solution & Answer
Check Mark

Answer to Problem 106P

The thickness of the lightest steel tube is 15mm_.

Explanation of Solution

Given information:

The length of the steel tube is L=2.2m.

The outer diameter of the steel tube is do=80mm.

The magnitude of the axial load is P=165kN.

The eccentricity of the load in steel tube is e=15mm.

The allowable yield stress of the steel tube is σY=250MPa.

The modulus of elasticity of the steel tube is E=200GPa.

The allowable stress in bending is (σall)bending=150MPa

Calculation:

The effective length of the column (Le) is equal to the length of the column (L).

Le=L=2.2m

Find the inner diameter of the steel tube (di) using the relation.

di=do2t

Here, the thickness of the steel tube is t.

Substitute 80 mm for do.

di=802t

Find the cross sectional area of the steel tube (A) using the equation.

A=π(do2di2)4

Substitute 80 mm for do and (802t) for di.

A=π×(802(802t)2)4

Find the moment of inertia of the steel tube (I) using the equation.

I=π(do4di4)64

Substitute 80 mm for do and (802t) for di.

I=π(804(802t)4)64

Find the minimum radius of gyration (r) using the relation.

r=IA

Substitute π(804(802t)4)64 for I and π×(802(802t)2)4 for A.

r=(π(804(802t)4)64)(π×(802(802t)2)4)=(804(802t)4)16(802(802t)2)

Find the distance between the neutral axis to the extreme fibre (c) using the relation.

c=do2

Substitute 80 mm for do.

c=802=40mm

Find the slenderness ratio Lr using the equation.

Lr=4.71EσY

Here, the modulus of elasticity of the material is E and the allowable yield strength is σY

Substitute 200 GPa for E and 250 MPa for σY:

Lr=4.71200GPa×1,000MPa1GPa250=133.22

Find the ratio of the effective length to the minimum radius of gyration.

Ler=2.2m×1,000mm1m(804(802t)4)16(802(802t)2)=8,800(804(802t)4)(802(802t)2) (1)

Consider 8,800(804(802t)4)(802(802t)2)<Lr=133.22.

Find the effective stress (σe) using the equation.

σe=π2E(Le/r)2

Substitute 200 GPa for E and 8,800(804(802t)4)(802(802t)2) for Le/r.

σe=π2×200GPa×1,000 MPa1GPa(8,800(804(802t)4)(802(802t)2))2=π2×200GPa×1,000 MPa1GPa×(804(802t)4)(802(802t)2)(8,800)2=0.02549(804(802t)4)(802(802t)2)

Find the critical stress (σcr) using the relation.

σcr=[0.658σYσe]σY

Substitute 250 MPa for σY and 0.02549(804(802t)4)(802(802t)2) for σe.

σcr=[0.658250[0.02549(804(802t)4)(802(802t)2)]]250=[0.6589,807.891(802(802t)2)(804(802t)4)]250

Find the allowable stress (σall)bending due to centric load using the relation.

(σall)centric=σcr1.67

Substitute [0.6589,807.891(802(802t)2)(804(802t)4)]250 for σcr.

(σall)centric=[0.6589,807.891(802(802t)2)(804(802t)4)]2501.67=149.701[0.6589,807.891(802(802t)2)(804(802t)4)]

Find the maximum moment (M) using the relation.

M=Pe

Here, the allowable load is P and the eccentricity of the load is e.

Substitute 165 kN for P and 15 mm for e.

M=165kN×1,000N1kN×15=2,475,000N-mm

Find the thickness of the lightest tube (t) using the centric and bending equation.

P/A(σall)centric+Mc/I(σall)bending1

Substitute 165 kN for P, π×(802(802t)2)4 for A, 149.701[0.6589,807.891(802(802t)2)(804(802t)4)] for (σall)centric, 2,475,000 N-mm for M, 40 mm for c, π(804(802t)4)64 for I, and 150 MPa for (σall),bending.

(165kN×1,000N1kNπ×(802(802t)2)4)149.701[0.6589,807.891(802(802t)2)(804(802t)4)]+(2,475,000×40π(804(802t)4)64)150=1

Solve the equation;

The thickness is t=13.901mm.

The nearest 3 mm increment of the thickness is 15 mm.

Check:

Substitute 15 mm for t in Equation (1).

Ler=8,800(804(802(15))4)(802(802(15))2)=8,80034,710,0003,900=93.28<Lr=133.22

Therefore, the thickness of the lightest steel tube is 15mm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An adjustable support. Construction designed to carry vertical load and is adjusted by moving the blue attachment vertically. The link is articulated at both ends (free to rotate) and can therefore only transmit power axially. Analytically calculate the force to which the link is subjected? Calculate analytically rated voltage in the middle of the link.? F=20kN Alpha 30 deg Rel 225 Mpans:5
A swivel crane where the load is moved axially along the beam through the wagon to which the hook is attached. Round bar with a diameter of ∅30 mm. The support beam is articulated at both ends (free to rotate) and can therefore only transmit force axially. Calculate reaction force in the x-direction at point A? Calculate analytical reaction force in the y-direction of point A? Calculate nominal stress in the middle of the support beam?Lengt 5 mAlfa 25 degX=1.5mIPE300-steelmass:1000 kg
got wrong answers help please

Chapter 10 Solutions

EBK MECHANICS OF MATERIALS

Ch. 10.1 - A column of effective length L can be made by...Ch. 10.1 - A compression member of 1.5-m effective length...Ch. 10.1 - Determine the radius of the round strut so that...Ch. 10.1 - Determine (a) the critical load for the square...Ch. 10.1 - A column with the cross section shown has a...Ch. 10.1 - A column is made from half of a W360 216...Ch. 10.1 - A column of 22-ft effective length is made by...Ch. 10.1 - A single compression member of 8.2-m effective...Ch. 10.1 - Knowing that P = 5.2 kN, determine the factor of...Ch. 10.1 - Members AB and CD are 30-mm-diameter steel rods,...Ch. 10.1 - The uniform brass bar AB has a rectangular cross...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - A 1-in.-square aluminum strut is maintained in the...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column ABC has a uniform rectangular cross section...Ch. 10.1 - Column AB carries a centric load P of magnitude 15...Ch. 10.1 - Each of the five struts shown consists of a solid...Ch. 10.1 - A rigid block of mass m can be supported in each...Ch. 10.2 - An axial load P = 15 kN is applied at point D that...Ch. 10.2 - An axial load P is applied to the 32-mm-diameter...Ch. 10.2 - The line of action of the 310-kN axial load is...Ch. 10.2 - Prob. 32PCh. 10.2 - An axial load P is applied to the 32-mm-square...Ch. 10.2 - Prob. 34PCh. 10.2 - Prob. 35PCh. 10.2 - Prob. 36PCh. 10.2 - Solve Prob. 10.36, assuming that the axial load P...Ch. 10.2 - The line of action of the axial load P is parallel...Ch. 10.2 - Prob. 39PCh. 10.2 - Prob. 40PCh. 10.2 - The steel bar AB has a 3838-in. square cross...Ch. 10.2 - For the bar of Prob. 10.41, determine the required...Ch. 10.2 - A 3.5-m-long steel tube having the cross section...Ch. 10.2 - Prob. 44PCh. 10.2 - An axial load P is applied to the W8 28...Ch. 10.2 - Prob. 46PCh. 10.2 - A 100-kN axial load P is applied to the W150 18...Ch. 10.2 - A 26-kip axial load P is applied to a W6 12...Ch. 10.2 - Prob. 49PCh. 10.2 - Axial loads of magnitude P = 84 kN are applied...Ch. 10.2 - An axial load of magnitude P = 220 kN is applied...Ch. 10.2 - Prob. 52PCh. 10.2 - Prob. 53PCh. 10.2 - Prob. 54PCh. 10.2 - Axial loads of magnitude P = 175 kN are applied...Ch. 10.2 - Prob. 56PCh. 10.3 - Using allowable stress design, determine the...Ch. 10.3 - Prob. 58PCh. 10.3 - Prob. 59PCh. 10.3 - A column having a 3.5-m effective length is made...Ch. 10.3 - Prob. 61PCh. 10.3 - Bar AB is free at its end A and fixed at its base...Ch. 10.3 - Prob. 63PCh. 10.3 - Prob. 64PCh. 10.3 - A compression member of 8.2-ft effective length is...Ch. 10.3 - A compression member of 9-m effective length is...Ch. 10.3 - A column of 6.4-m effective length is obtained by...Ch. 10.3 - A column of 21-ft effective length is obtained by...Ch. 10.3 - Prob. 69PCh. 10.3 - Prob. 70PCh. 10.3 - Prob. 71PCh. 10.3 - Prob. 72PCh. 10.3 - Prob. 73PCh. 10.3 - For a rod made of aluminum alloy 2014-T6, select...Ch. 10.3 - Prob. 75PCh. 10.3 - Prob. 76PCh. 10.3 - A column of 4.6-m effective length must carry a...Ch. 10.3 - A column of 22.5-ft effective length must carry a...Ch. 10.3 - Prob. 79PCh. 10.3 - A centric load P must be supported by the steel...Ch. 10.3 - A square steel tube having the cross section shown...Ch. 10.3 - Prob. 82PCh. 10.3 - Prob. 83PCh. 10.3 - Two 89 64-mm angles are bolted together as shown...Ch. 10.3 - Prob. 85PCh. 10.3 - Prob. 86PCh. 10.3 - Prob. 87PCh. 10.3 - Prob. 88PCh. 10.4 - An eccentric load is applied at a point 22 mm from...Ch. 10.4 - Prob. 90PCh. 10.4 - Prob. 91PCh. 10.4 - Solve Prob. 10.91 using the interaction method and...Ch. 10.4 - A column of 5.5-m effective length is made of the...Ch. 10.4 - Prob. 94PCh. 10.4 - A steel compression member of 9-ft effective...Ch. 10.4 - Prob. 96PCh. 10.4 - Two L4 3 38-in. steel angles are welded together...Ch. 10.4 - Solve Prob. 10.97 using the interaction method...Ch. 10.4 - A rectangular column is made of a grade of sawn...Ch. 10.4 - Prob. 100PCh. 10.4 - Prob. 101PCh. 10.4 - Prob. 102PCh. 10.4 - Prob. 103PCh. 10.4 - Prob. 104PCh. 10.4 - A steel tube of 80-mm outer diameter is to carry a...Ch. 10.4 - Prob. 106PCh. 10.4 - Prob. 107PCh. 10.4 - Prob. 108PCh. 10.4 - Prob. 109PCh. 10.4 - Prob. 110PCh. 10.4 - Prob. 111PCh. 10.4 - Prob. 112PCh. 10.4 - Prob. 113PCh. 10.4 - Prob. 114PCh. 10.4 - Prob. 115PCh. 10.4 - A steel column of 7.2-m effective length is to...Ch. 10 - Determine (a) the critical load for the steel...Ch. 10 - Prob. 118RPCh. 10 - Prob. 119RPCh. 10 - (a) Considering only buckling in the plane of the...Ch. 10 - Member AB consists of a single C130 3 10.4 steel...Ch. 10 - The line of action of the 75-kip axial load is...Ch. 10 - Prob. 123RPCh. 10 - Prob. 124RPCh. 10 - A rectangular column with a 4.4-m effective length...Ch. 10 - Prob. 126RPCh. 10 - Prob. 127RPCh. 10 - Prob. 128RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Everything About COMBINED LOADING in 10 Minutes! Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=N-PlI900hSg;License: Standard youtube license