
Concept explainers
Select the lightest W200 shape.

Answer to Problem 52P
The lightest W200 shape is
Explanation of Solution
Given information:
The magnitude of axial load is
The eccentricity of the load is
The modulus of elasticity of the shape is
The allowable stress in the column is
Calculation:
The effective length of the column
Consider the section
Refer to the Appendix C “Properties of Rolled-Steel Shapes” in the textbook.
For
The cross sectional area is
The minimum moment of inertia in the y-axis is
The minimum radius of gyration in the y-axis is
The width of the flange is
Find the distance between the neutral axis and the outermost fibre (c) using the relation.
Substitute 166 mm for
Determine the critical load
Here, the modulus of elasticity is E, the minimum moment of inertia is I, and the effective length is
Substitute 200 GPa for E,
Find the maximum stress
Here, the maximum stress in the column is
Substitute 345 kN for P, 1,375 kN for
Consider the section
Refer to the Appendix C “Properties of Rolled-Steel Shapes” in the textbook.
For
The cross sectional area is
The minimum moment of inertia in the y-axis is
The minimum radius of gyration in the y-axis is
The width of the flange is
Find the distance between the neutral axis and the outermost fibre (c) using the relation.
Substitute 133 mm for
Determine the critical load
Substitute 200 GPa for E,
Find the maximum stress
Substitute 345 kN for P, 505.66 kN for
Consider the section
Refer to the Appendix C “Properties of Rolled-Steel Shapes” in the textbook.
For
The cross sectional area is
The minimum moment of inertia in the y-axis is
The minimum radius of gyration in the y-axis is
The width of the flange is
Find the distance between the neutral axis and the outermost fibre (c) using the relation.
Substitute 165 mm for
Determine the critical load
Substitute 200 GPa for E,
Find the maximum stress
Substitute 345 kN for P, 1,161 kN for
The calculated maximum stress is closer to the allowable stress.
The shape
Therefore, the lightest W200 shape is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK MECHANICS OF MATERIALS
- from this problem a want you to help to draw the shear moment and the bending momentarrow_forwardreaction at a is 1.6 wL (pos) handwritten solutions only please. correct answers upvotedarrow_forward1 8 4 Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forward
- Uppgift 2 (9p) I77777 20 kN 10 kN/m 4 [m] 2 2 Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges med både läge och värde i diagrammen.arrow_forward**Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…arrow_forwardplease solve this problems follow what the question are asking to do please show me step by steparrow_forward
- please help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forwardplese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





