Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.2, Problem 23E
Converting coordinates Express the following Cartesian coordinates in polar coordinates in at least two different ways.
23.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
i need help please
6.
(i)
Sketch the trace of the following curve on R²,
(t) = (sin(t), 3 sin(t)),
tЄ [0, π].
[3 Marks]
Total marks 10
(ii)
Find the length of this curve.
[7 Marks]
helppp
Chapter 10 Solutions
Calculus: Early Transcendentals (2nd Edition)
Ch. 10.1 - Explain how a pair of parametric equations...Ch. 10.1 - Prob. 2ECh. 10.1 - Prob. 3ECh. 10.1 - Give parametric equations that generate the line...Ch. 10.1 - Prob. 5ECh. 10.1 - Prob. 6ECh. 10.1 - Prob. 7ECh. 10.1 - Prob. 8ECh. 10.1 - Prob. 9ECh. 10.1 - Explain how to find points on the curve x = f(t),...
Ch. 10.1 - Prob. 11ECh. 10.1 - Prob. 12ECh. 10.1 - Prob. 13ECh. 10.1 - Prob. 14ECh. 10.1 - Prob. 15ECh. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Prob. 30ECh. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Prob. 32ECh. 10.1 - Prob. 33ECh. 10.1 - Prob. 34ECh. 10.1 - Prob. 35ECh. 10.1 - Prob. 36ECh. 10.1 - Parametric lines Find the slope of each line and a...Ch. 10.1 - Parametric lines Find the slope of each line and a...Ch. 10.1 - Parametric lines Find the slope of each line and a...Ch. 10.1 - Prob. 40ECh. 10.1 - Prob. 41ECh. 10.1 - Prob. 42ECh. 10.1 - Prob. 43ECh. 10.1 - Prob. 44ECh. 10.1 - Curves to parametric equations Give a set of...Ch. 10.1 - Curves to parametric equations Give a set of...Ch. 10.1 - Prob. 47ECh. 10.1 - Prob. 48ECh. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - Prob. 55ECh. 10.1 - Beautiful curves Consider the family of curves...Ch. 10.1 - Prob. 57ECh. 10.1 - Prob. 58ECh. 10.1 - Prob. 59ECh. 10.1 - Derivatives Consider the following parametric...Ch. 10.1 - Derivatives Consider the following parametric...Ch. 10.1 - Prob. 62ECh. 10.1 - Derivatives Consider the following parametric...Ch. 10.1 - Prob. 64ECh. 10.1 - Explain why or why not Determine whether the...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Prob. 70ECh. 10.1 - Prob. 71ECh. 10.1 - Prob. 72ECh. 10.1 - Prob. 73ECh. 10.1 - Prob. 74ECh. 10.1 - Prob. 75ECh. 10.1 - Prob. 76ECh. 10.1 - Prob. 77ECh. 10.1 - Prob. 78ECh. 10.1 - Prob. 79ECh. 10.1 - Prob. 80ECh. 10.1 - Prob. 81ECh. 10.1 - Prob. 82ECh. 10.1 - Eliminating the parameter Eliminate the parameter...Ch. 10.1 - Eliminating the parameter Eliminate the parameter...Ch. 10.1 - Prob. 85ECh. 10.1 - Prob. 86ECh. 10.1 - Prob. 87ECh. 10.1 - Prob. 88ECh. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Prob. 93ECh. 10.1 - Prob. 94ECh. 10.1 - Prob. 95ECh. 10.1 - Lissajous curves Consider the following Lissajous...Ch. 10.1 - Lam curves The Lam curve described by...Ch. 10.1 - Prob. 98ECh. 10.1 - Prob. 99ECh. 10.1 - Prob. 100ECh. 10.1 - Prob. 101ECh. 10.1 - Prob. 102ECh. 10.1 - Prob. 103ECh. 10.1 - Air drop A plane traveling horizontally at 80 m/s...Ch. 10.1 - Air dropinverse problem A plane traveling...Ch. 10.1 - Prob. 106ECh. 10.1 - Implicit function graph Explain and carry out a...Ch. 10.1 - Prob. 108ECh. 10.1 - Prob. 109ECh. 10.1 - Prob. 110ECh. 10.2 - Plot the points with polar coordinates (2,6) and...Ch. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - What is the polar equation of the vertical line x...Ch. 10.2 - What is the polar equation of the horizontal line...Ch. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Graph the points with the following polar...Ch. 10.2 - Graph the points with the following polar...Ch. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Points in polar coordinates Give two sets of polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Prob. 27ECh. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.2 - Prob. 31ECh. 10.2 - Prob. 32ECh. 10.2 - Prob. 33ECh. 10.2 - Prob. 34ECh. 10.2 - Prob. 35ECh. 10.2 - Prob. 36ECh. 10.2 - Prob. 37ECh. 10.2 - Prob. 38ECh. 10.2 - Prob. 39ECh. 10.2 - Prob. 40ECh. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Prob. 43ECh. 10.2 - Prob. 44ECh. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Prob. 49ECh. 10.2 - Prob. 50ECh. 10.2 - Prob. 51ECh. 10.2 - Prob. 52ECh. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Prob. 55ECh. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Prob. 59ECh. 10.2 - Prob. 60ECh. 10.2 - Prob. 61ECh. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Prob. 66ECh. 10.2 - Prob. 67ECh. 10.2 - Prob. 68ECh. 10.2 - Prob. 69ECh. 10.2 - Prob. 70ECh. 10.2 - Prob. 71ECh. 10.2 - Prob. 72ECh. 10.2 - Prob. 73ECh. 10.2 - Prob. 74ECh. 10.2 - Circles in general Show that the polar equation...Ch. 10.2 - Prob. 76ECh. 10.2 - Prob. 77ECh. 10.2 - Prob. 78ECh. 10.2 - Prob. 79ECh. 10.2 - Prob. 80ECh. 10.2 - Prob. 81ECh. 10.2 - Equations of circles Find equations of the circles...Ch. 10.2 - Prob. 83ECh. 10.2 - Prob. 84ECh. 10.2 - Prob. 85ECh. 10.2 - Prob. 86ECh. 10.2 - Prob. 87ECh. 10.2 - Prob. 88ECh. 10.2 - Prob. 89ECh. 10.2 - Limiting limaon Consider the family of limaons r =...Ch. 10.2 - Prob. 91ECh. 10.2 - Prob. 92ECh. 10.2 - Prob. 93ECh. 10.2 - The lemniscate family Equations of the form r2 = a...Ch. 10.2 - The rose family Equations of the form r = a sin m...Ch. 10.2 - Prob. 96ECh. 10.2 - Prob. 97ECh. 10.2 - The rose family Equations of the form r = a sin m...Ch. 10.2 - Prob. 99ECh. 10.2 - Prob. 100ECh. 10.2 - Prob. 101ECh. 10.2 - Spirals Graph the following spirals. Indicate the...Ch. 10.2 - Prob. 103ECh. 10.2 - Prob. 104ECh. 10.2 - Prob. 105ECh. 10.2 - Prob. 106ECh. 10.2 - Enhanced butterfly curve The butterfly curve of...Ch. 10.2 - Prob. 108ECh. 10.2 - Prob. 109ECh. 10.2 - Prob. 110ECh. 10.2 - Prob. 111ECh. 10.2 - Cartesian lemniscate Find the equation in...Ch. 10.2 - Prob. 113ECh. 10.2 - Prob. 114ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Explain why the slope of the line tangent to the...Ch. 10.3 - What integral must be evaluated to find the area...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Horizontal and vertical tangents Find the points...Ch. 10.3 - Horizontal and vertical tangents Find the points...Ch. 10.3 - Horizontal and vertical tangents Find the points...Ch. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Prob. 37ECh. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.3 - Prob. 40ECh. 10.3 - Prob. 41ECh. 10.3 - Prob. 42ECh. 10.3 - Prob. 43ECh. 10.3 - Prob. 44ECh. 10.3 - Prob. 45ECh. 10.3 - Multiple identities Explain why the point (1, 3/2)...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Prob. 51ECh. 10.3 - Prob. 52ECh. 10.3 - Regions bounded by a spiral Let Rn be the region...Ch. 10.3 - Area of polar regions Find the area of the regions...Ch. 10.3 - Area of polar regions Find the area of the regions...Ch. 10.3 - Area of polar regions Find the area of the regions...Ch. 10.3 - Prob. 57ECh. 10.3 - Prob. 58ECh. 10.3 - Grazing goat problems Consider the following...Ch. 10.3 - Grazing goat problems Consider the following...Ch. 10.3 - Prob. 61ECh. 10.3 - Tangents and normals Let a polar curve be...Ch. 10.3 - Prob. 63ECh. 10.4 - Give the property that defines all parabolas.Ch. 10.4 - Prob. 2ECh. 10.4 - Give the property that defines all hyperbolas.Ch. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - What is the equation of the standard parabola with...Ch. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Given vertices (a, 0) and eccentricity e, what are...Ch. 10.4 - Prob. 10ECh. 10.4 - What are the equations of the asymptotes of a...Ch. 10.4 - Prob. 12ECh. 10.4 - Graphing parabolas Sketch a graph of the following...Ch. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - Prob. 16ECh. 10.4 - Prob. 17ECh. 10.4 - Graphing parabolas Sketch a graph of the following...Ch. 10.4 - Prob. 19ECh. 10.4 - Equations of parabolas Find an equation of the...Ch. 10.4 - Equations of parabolas Find an equation of the...Ch. 10.4 - Prob. 22ECh. 10.4 - Prob. 23ECh. 10.4 - Equations of parabolas Find an equation of the...Ch. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - Prob. 27ECh. 10.4 - Prob. 28ECh. 10.4 - Prob. 29ECh. 10.4 - Prob. 30ECh. 10.4 - Prob. 31ECh. 10.4 - Prob. 32ECh. 10.4 - Equations of ellipses Find an equation of the...Ch. 10.4 - Equations of ellipses Find an equation of the...Ch. 10.4 - Equations of ellipses Find an equation of the...Ch. 10.4 - Prob. 36ECh. 10.4 - Prob. 37ECh. 10.4 - Prob. 38ECh. 10.4 - Prob. 39ECh. 10.4 - Prob. 40ECh. 10.4 - Prob. 41ECh. 10.4 - Prob. 42ECh. 10.4 - Prob. 43ECh. 10.4 - Prob. 44ECh. 10.4 - Equations of hyperbolas Find an equation of the...Ch. 10.4 - Equations of hyperbolas Find an equation of the...Ch. 10.4 - Equations of hyperbolas Find an equation of the...Ch. 10.4 - Prob. 48ECh. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Prob. 55ECh. 10.4 - Prob. 56ECh. 10.4 - Prob. 57ECh. 10.4 - Prob. 58ECh. 10.4 - Prob. 59ECh. 10.4 - Prob. 60ECh. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Prob. 65ECh. 10.4 - Hyperbolas with a graphing utility Use a graphing...Ch. 10.4 - Prob. 67ECh. 10.4 - Prob. 68ECh. 10.4 - Tangent lines Find an equation of the tine tangent...Ch. 10.4 - Tangent lines Find an equation of the tine tangent...Ch. 10.4 - Tangent lines Find an equation of the tine tangent...Ch. 10.4 - Prob. 72ECh. 10.4 - Prob. 73ECh. 10.4 - Prob. 74ECh. 10.4 - Prob. 75ECh. 10.4 - The ellipse and the parabola Let R be the region...Ch. 10.4 - Tangent lines for an ellipse Show that an equation...Ch. 10.4 - Prob. 78ECh. 10.4 - Volume of an ellipsoid Suppose that the ellipse...Ch. 10.4 - Area of a sector of a hyperbola Consider the...Ch. 10.4 - Volume of a hyperbolic cap Consider the region R...Ch. 10.4 - Prob. 82ECh. 10.4 - Prob. 83ECh. 10.4 - Golden Gate Bridge Completed in 1937, San...Ch. 10.4 - Prob. 85ECh. 10.4 - Prob. 86ECh. 10.4 - Prob. 87ECh. 10.4 - Prob. 88ECh. 10.4 - Shared asymptotes Suppose that two hyperbolas with...Ch. 10.4 - Focal chords A focal chord of a conic section is a...Ch. 10.4 - Focal chords A focal chord of a conic section is a...Ch. 10.4 - Focal chords A focal chord of a conic section is a...Ch. 10.4 - Prob. 93ECh. 10.4 - Prob. 94ECh. 10.4 - Confocal ellipse and hyperbola Show that an...Ch. 10.4 - Approach to asymptotes Show that the vertical...Ch. 10.4 - Prob. 97ECh. 10.4 - Prob. 98ECh. 10.4 - Prob. 99ECh. 10 - Explain why or why not Determine whether the...Ch. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 6RECh. 10 - Prob. 7RECh. 10 - Prob. 8RECh. 10 - Eliminating the parameter Eliminate the parameter...Ch. 10 - Prob. 10RECh. 10 - Parametric description Write parametric equations...Ch. 10 - Parametric description Write parametric equations...Ch. 10 - Prob. 13RECh. 10 - Prob. 14RECh. 10 - Parametric description Write parametric equations...Ch. 10 - Parametric description Write parametric equations...Ch. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Prob. 18RECh. 10 - Prob. 19RECh. 10 - Sets in polar coordinates Sketch the following...Ch. 10 - Prob. 21RECh. 10 - Prob. 22RECh. 10 - Polar conversion Write the equation...Ch. 10 - Polar conversion Consider the equation r = 4/(sin ...Ch. 10 - Prob. 25RECh. 10 - Prob. 26RECh. 10 - Prob. 27RECh. 10 - Slopes of tangent lines a. Find all points where...Ch. 10 - Slopes of tangent lines a. Find all points where...Ch. 10 - Slopes of tangent lines a. Find all points where...Ch. 10 - Prob. 31RECh. 10 - The region enclosed by all the leaves of the rose...Ch. 10 - The region enclosed by the limaon r = 3 cosCh. 10 - The region inside the limaon r = 2 + cos and...Ch. 10 - Prob. 35RECh. 10 - Prob. 36RECh. 10 - The area that is inside the cardioid r = 1 + cos ...Ch. 10 - Prob. 38RECh. 10 - Prob. 39RECh. 10 - Prob. 40RECh. 10 - Conic sections a. Determine whether the following...Ch. 10 - Prob. 42RECh. 10 - Prob. 43RECh. 10 - Prob. 44RECh. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Prob. 46RECh. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Prob. 49RECh. 10 - Prob. 50RECh. 10 - Prob. 51RECh. 10 - Prob. 52RECh. 10 - Prob. 53RECh. 10 - Prob. 54RECh. 10 - Eccentricity-directrix approach Find an equation...Ch. 10 - Prob. 56RECh. 10 - Prob. 57RECh. 10 - Prob. 58RECh. 10 - Prob. 59RECh. 10 - Prob. 60RECh. 10 - Prob. 61RECh. 10 - Prob. 62RECh. 10 - Prob. 63RECh. 10 - Prob. 64RECh. 10 - Prob. 65RECh. 10 - Prob. 66RECh. 10 - Prob. 67RECh. 10 - Prob. 68RECh. 10 - Prob. 69RECh. 10 - Prob. 70RECh. 10 - Prob. 71RE
Additional Math Textbook Solutions
Find more solutions based on key concepts
Read about basic ideas of statistics in Common Core Standards for grades 3-5, and discuss why students at these...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
In Exercises 25–28, use the confidence interval to find the margin of error and the sample mean.
25. (12.0, 14....
Elementary Statistics: Picturing the World (7th Edition)
The four flaws in the given survey.
Elementary Statistics
Fill in each blank so that the resulting statement is true. Any set of ordered pairs is called a/an ____.The se...
Algebra and Trigonometry (6th Edition)
76. Dew Point and Altitude The dew point decreases as altitude increases. If the dew point on the ground is 80°...
College Algebra with Modeling & Visualization (5th Edition)
Three cards are randomly selected, without replacement, from an ordinary deck of 52 playing cards. Compute the ...
A First Course in Probability (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forwardTotal marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forward
- Total marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forwardTotal marks 15 པ་ (i) Sketch the trace of the following curve on R2, (t) = (t2 cos(t), t² sin(t)), t = [0,2π]. [3 Marks] (ii) Find the length of this curve. (iii) [7 Marks] Give a parametric representation of a curve : [0, that has initial point (1,0), final point (0, 1) and the length √2. → R² [5 Marks] Turn over. MA-201: Page 4 of 5arrow_forwardTotal marks 15 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly your answer. [5 Marks] 6. (i) Sketch the trace of the following curve on R2, y(t) = (sin(t), 3 sin(t)), t = [0,π]. [3 Marks]arrow_forward
- A ladder 25 feet long is leaning against the wall of a building. Initially, the foot of the ladder is 7 feet from the wall. The foot of the ladder begins to slide at a rate of 2 ft/sec, causing the top of the ladder to slide down the wall. The location of the foot of the ladder, its x coordinate, at time t seconds is given by x(t)=7+2t. wall y(1) 25 ft. ladder x(1) ground (a) Find the formula for the location of the top of the ladder, the y coordinate, as a function of time t. The formula for y(t)= √ 25² - (7+2t)² (b) The domain of t values for y(t) ranges from 0 (c) Calculate the average velocity of the top of the ladder on each of these time intervals (correct to three decimal places): . (Put your cursor in the box, click and a palette will come up to help you enter your symbolic answer.) time interval ave velocity [0,2] -0.766 [6,8] -3.225 time interval ave velocity -1.224 -9.798 [2,4] [8,9] (d) Find a time interval [a,9] so that the average velocity of the top of the ladder on this…arrow_forwardTotal marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]arrow_forward5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]arrow_forward
- Total marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]arrow_forward4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Polar Coordinates Basic Introduction, Conversion to Rectangular, How to Plot Points, Negative R Valu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=aSdaT62ndYE;License: Standard YouTube License, CC-BY