Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
Author: William L. Briggs, Lyle Cochran, Bernard Gillett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 10.1, Problem 8E
To determine
To find: The direction of the curve whose parametric equation is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Total marks 15
3.
(i)
Let FRN Rm be a mapping and x = RN is a given
point. Which of the following statements are true? Construct counterex-
amples for any that are false.
(a)
If F is continuous at x then F is differentiable at x.
(b)
If F is differentiable at x then F is continuous at x.
If F is differentiable at x then F has all 1st order partial
(c)
derivatives at x.
(d) If all 1st order partial derivatives of F exist and are con-
tinuous on RN then F is differentiable at x.
[5 Marks]
(ii) Let mappings
F= (F1, F2) R³ → R² and
G=(G1, G2) R² → R²
:
be defined by
F₁ (x1, x2, x3) = x1 + x²,
G1(1, 2) = 31,
F2(x1, x2, x3) = x² + x3,
G2(1, 2)=sin(1+ y2).
By using the chain rule, calculate the Jacobian matrix of the mapping
GoF R3 R²,
i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)?
(iii)
[7 Marks]
Give reasons why the mapping Go F is differentiable at
(0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0).
[3 Marks]
5.
(i)
Let f R2 R be defined by
f(x1, x2) = x² - 4x1x2 + 2x3.
Find all local minima of f on R².
(ii)
[10 Marks]
Give an example of a function f: R2 R which is not bounded
above and has exactly one critical point, which is a minimum. Justify briefly
Total marks 15
your answer.
[5 Marks]
Total marks 15
4.
:
Let f R2 R be defined by
f(x1, x2) = 2x²- 8x1x2+4x+2.
Find all local minima of f on R².
[10 Marks]
(ii) Give an example of a function f R2 R which is neither
bounded below nor bounded above, and has no critical point. Justify
briefly your answer.
[5 Marks]
Chapter 10 Solutions
Calculus: Early Transcendentals (2nd Edition)
Ch. 10.1 - Explain how a pair of parametric equations...Ch. 10.1 - Prob. 2ECh. 10.1 - Prob. 3ECh. 10.1 - Give parametric equations that generate the line...Ch. 10.1 - Prob. 5ECh. 10.1 - Prob. 6ECh. 10.1 - Prob. 7ECh. 10.1 - Prob. 8ECh. 10.1 - Prob. 9ECh. 10.1 - Explain how to find points on the curve x = f(t),...
Ch. 10.1 - Prob. 11ECh. 10.1 - Prob. 12ECh. 10.1 - Prob. 13ECh. 10.1 - Prob. 14ECh. 10.1 - Prob. 15ECh. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - Prob. 25ECh. 10.1 - Prob. 26ECh. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Prob. 30ECh. 10.1 - Parametric equations of circles Find parametric...Ch. 10.1 - Prob. 32ECh. 10.1 - Prob. 33ECh. 10.1 - Prob. 34ECh. 10.1 - Prob. 35ECh. 10.1 - Prob. 36ECh. 10.1 - Parametric lines Find the slope of each line and a...Ch. 10.1 - Parametric lines Find the slope of each line and a...Ch. 10.1 - Parametric lines Find the slope of each line and a...Ch. 10.1 - Prob. 40ECh. 10.1 - Prob. 41ECh. 10.1 - Prob. 42ECh. 10.1 - Prob. 43ECh. 10.1 - Prob. 44ECh. 10.1 - Curves to parametric equations Give a set of...Ch. 10.1 - Curves to parametric equations Give a set of...Ch. 10.1 - Prob. 47ECh. 10.1 - Prob. 48ECh. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - More parametric curves Use a graphing utility to...Ch. 10.1 - Prob. 55ECh. 10.1 - Beautiful curves Consider the family of curves...Ch. 10.1 - Prob. 57ECh. 10.1 - Prob. 58ECh. 10.1 - Prob. 59ECh. 10.1 - Derivatives Consider the following parametric...Ch. 10.1 - Derivatives Consider the following parametric...Ch. 10.1 - Prob. 62ECh. 10.1 - Derivatives Consider the following parametric...Ch. 10.1 - Prob. 64ECh. 10.1 - Explain why or why not Determine whether the...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Tangent lines Find an equation of the line tangent...Ch. 10.1 - Prob. 70ECh. 10.1 - Prob. 71ECh. 10.1 - Prob. 72ECh. 10.1 - Prob. 73ECh. 10.1 - Prob. 74ECh. 10.1 - Prob. 75ECh. 10.1 - Prob. 76ECh. 10.1 - Prob. 77ECh. 10.1 - Prob. 78ECh. 10.1 - Prob. 79ECh. 10.1 - Prob. 80ECh. 10.1 - Prob. 81ECh. 10.1 - Prob. 82ECh. 10.1 - Eliminating the parameter Eliminate the parameter...Ch. 10.1 - Eliminating the parameter Eliminate the parameter...Ch. 10.1 - Prob. 85ECh. 10.1 - Prob. 86ECh. 10.1 - Prob. 87ECh. 10.1 - Prob. 88ECh. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Slopes of tangent lines Find all the points at...Ch. 10.1 - Prob. 93ECh. 10.1 - Prob. 94ECh. 10.1 - Prob. 95ECh. 10.1 - Lissajous curves Consider the following Lissajous...Ch. 10.1 - Lam curves The Lam curve described by...Ch. 10.1 - Prob. 98ECh. 10.1 - Prob. 99ECh. 10.1 - Prob. 100ECh. 10.1 - Prob. 101ECh. 10.1 - Prob. 102ECh. 10.1 - Prob. 103ECh. 10.1 - Air drop A plane traveling horizontally at 80 m/s...Ch. 10.1 - Air dropinverse problem A plane traveling...Ch. 10.1 - Prob. 106ECh. 10.1 - Implicit function graph Explain and carry out a...Ch. 10.1 - Prob. 108ECh. 10.1 - Prob. 109ECh. 10.1 - Prob. 110ECh. 10.2 - Plot the points with polar coordinates (2,6) and...Ch. 10.2 - Prob. 2ECh. 10.2 - Prob. 3ECh. 10.2 - Prob. 4ECh. 10.2 - What is the polar equation of the vertical line x...Ch. 10.2 - What is the polar equation of the horizontal line...Ch. 10.2 - Prob. 7ECh. 10.2 - Prob. 8ECh. 10.2 - Graph the points with the following polar...Ch. 10.2 - Graph the points with the following polar...Ch. 10.2 - Prob. 11ECh. 10.2 - Prob. 12ECh. 10.2 - Prob. 13ECh. 10.2 - Points in polar coordinates Give two sets of polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following polar...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Converting coordinates Express the following...Ch. 10.2 - Prob. 27ECh. 10.2 - Prob. 28ECh. 10.2 - Prob. 29ECh. 10.2 - Prob. 30ECh. 10.2 - Prob. 31ECh. 10.2 - Prob. 32ECh. 10.2 - Prob. 33ECh. 10.2 - Prob. 34ECh. 10.2 - Prob. 35ECh. 10.2 - Prob. 36ECh. 10.2 - Prob. 37ECh. 10.2 - Prob. 38ECh. 10.2 - Prob. 39ECh. 10.2 - Prob. 40ECh. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Prob. 43ECh. 10.2 - Prob. 44ECh. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Graphing polar curves Graph the following...Ch. 10.2 - Prob. 49ECh. 10.2 - Prob. 50ECh. 10.2 - Prob. 51ECh. 10.2 - Prob. 52ECh. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Prob. 55ECh. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Using a graphing utility Use a graphing utility to...Ch. 10.2 - Prob. 59ECh. 10.2 - Prob. 60ECh. 10.2 - Prob. 61ECh. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Cartesian-to-polar coordinates Convert the...Ch. 10.2 - Prob. 66ECh. 10.2 - Prob. 67ECh. 10.2 - Prob. 68ECh. 10.2 - Prob. 69ECh. 10.2 - Prob. 70ECh. 10.2 - Prob. 71ECh. 10.2 - Prob. 72ECh. 10.2 - Prob. 73ECh. 10.2 - Prob. 74ECh. 10.2 - Circles in general Show that the polar equation...Ch. 10.2 - Prob. 76ECh. 10.2 - Prob. 77ECh. 10.2 - Prob. 78ECh. 10.2 - Prob. 79ECh. 10.2 - Prob. 80ECh. 10.2 - Prob. 81ECh. 10.2 - Equations of circles Find equations of the circles...Ch. 10.2 - Prob. 83ECh. 10.2 - Prob. 84ECh. 10.2 - Prob. 85ECh. 10.2 - Prob. 86ECh. 10.2 - Prob. 87ECh. 10.2 - Prob. 88ECh. 10.2 - Prob. 89ECh. 10.2 - Limiting limaon Consider the family of limaons r =...Ch. 10.2 - Prob. 91ECh. 10.2 - Prob. 92ECh. 10.2 - Prob. 93ECh. 10.2 - The lemniscate family Equations of the form r2 = a...Ch. 10.2 - The rose family Equations of the form r = a sin m...Ch. 10.2 - Prob. 96ECh. 10.2 - Prob. 97ECh. 10.2 - The rose family Equations of the form r = a sin m...Ch. 10.2 - Prob. 99ECh. 10.2 - Prob. 100ECh. 10.2 - Prob. 101ECh. 10.2 - Spirals Graph the following spirals. Indicate the...Ch. 10.2 - Prob. 103ECh. 10.2 - Prob. 104ECh. 10.2 - Prob. 105ECh. 10.2 - Prob. 106ECh. 10.2 - Enhanced butterfly curve The butterfly curve of...Ch. 10.2 - Prob. 108ECh. 10.2 - Prob. 109ECh. 10.2 - Prob. 110ECh. 10.2 - Prob. 111ECh. 10.2 - Cartesian lemniscate Find the equation in...Ch. 10.2 - Prob. 113ECh. 10.2 - Prob. 114ECh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Explain why the slope of the line tangent to the...Ch. 10.3 - What integral must be evaluated to find the area...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Slopes of tangent lines Find the slope of the line...Ch. 10.3 - Horizontal and vertical tangents Find the points...Ch. 10.3 - Horizontal and vertical tangents Find the points...Ch. 10.3 - Horizontal and vertical tangents Find the points...Ch. 10.3 - Prob. 18ECh. 10.3 - Prob. 19ECh. 10.3 - Prob. 20ECh. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Areas of regions Make a sketch of the region and...Ch. 10.3 - Prob. 37ECh. 10.3 - Prob. 38ECh. 10.3 - Prob. 39ECh. 10.3 - Prob. 40ECh. 10.3 - Prob. 41ECh. 10.3 - Prob. 42ECh. 10.3 - Prob. 43ECh. 10.3 - Prob. 44ECh. 10.3 - Prob. 45ECh. 10.3 - Multiple identities Explain why the point (1, 3/2)...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Area of plane regions Find the areas of the...Ch. 10.3 - Prob. 51ECh. 10.3 - Prob. 52ECh. 10.3 - Regions bounded by a spiral Let Rn be the region...Ch. 10.3 - Area of polar regions Find the area of the regions...Ch. 10.3 - Area of polar regions Find the area of the regions...Ch. 10.3 - Area of polar regions Find the area of the regions...Ch. 10.3 - Prob. 57ECh. 10.3 - Prob. 58ECh. 10.3 - Grazing goat problems Consider the following...Ch. 10.3 - Grazing goat problems Consider the following...Ch. 10.3 - Prob. 61ECh. 10.3 - Tangents and normals Let a polar curve be...Ch. 10.3 - Prob. 63ECh. 10.4 - Give the property that defines all parabolas.Ch. 10.4 - Prob. 2ECh. 10.4 - Give the property that defines all hyperbolas.Ch. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - What is the equation of the standard parabola with...Ch. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Given vertices (a, 0) and eccentricity e, what are...Ch. 10.4 - Prob. 10ECh. 10.4 - What are the equations of the asymptotes of a...Ch. 10.4 - Prob. 12ECh. 10.4 - Graphing parabolas Sketch a graph of the following...Ch. 10.4 - Prob. 14ECh. 10.4 - Prob. 15ECh. 10.4 - Prob. 16ECh. 10.4 - Prob. 17ECh. 10.4 - Graphing parabolas Sketch a graph of the following...Ch. 10.4 - Prob. 19ECh. 10.4 - Equations of parabolas Find an equation of the...Ch. 10.4 - Equations of parabolas Find an equation of the...Ch. 10.4 - Prob. 22ECh. 10.4 - Prob. 23ECh. 10.4 - Equations of parabolas Find an equation of the...Ch. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - Prob. 27ECh. 10.4 - Prob. 28ECh. 10.4 - Prob. 29ECh. 10.4 - Prob. 30ECh. 10.4 - Prob. 31ECh. 10.4 - Prob. 32ECh. 10.4 - Equations of ellipses Find an equation of the...Ch. 10.4 - Equations of ellipses Find an equation of the...Ch. 10.4 - Equations of ellipses Find an equation of the...Ch. 10.4 - Prob. 36ECh. 10.4 - Prob. 37ECh. 10.4 - Prob. 38ECh. 10.4 - Prob. 39ECh. 10.4 - Prob. 40ECh. 10.4 - Prob. 41ECh. 10.4 - Prob. 42ECh. 10.4 - Prob. 43ECh. 10.4 - Prob. 44ECh. 10.4 - Equations of hyperbolas Find an equation of the...Ch. 10.4 - Equations of hyperbolas Find an equation of the...Ch. 10.4 - Equations of hyperbolas Find an equation of the...Ch. 10.4 - Prob. 48ECh. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - From graphs to equations Write an equation of the...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Eccentricity-directrix approach Find an equation...Ch. 10.4 - Prob. 55ECh. 10.4 - Prob. 56ECh. 10.4 - Prob. 57ECh. 10.4 - Prob. 58ECh. 10.4 - Prob. 59ECh. 10.4 - Prob. 60ECh. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Tracing hyperbolas and parabolas Graph the...Ch. 10.4 - Prob. 65ECh. 10.4 - Hyperbolas with a graphing utility Use a graphing...Ch. 10.4 - Prob. 67ECh. 10.4 - Prob. 68ECh. 10.4 - Tangent lines Find an equation of the tine tangent...Ch. 10.4 - Tangent lines Find an equation of the tine tangent...Ch. 10.4 - Tangent lines Find an equation of the tine tangent...Ch. 10.4 - Prob. 72ECh. 10.4 - Prob. 73ECh. 10.4 - Prob. 74ECh. 10.4 - Prob. 75ECh. 10.4 - The ellipse and the parabola Let R be the region...Ch. 10.4 - Tangent lines for an ellipse Show that an equation...Ch. 10.4 - Prob. 78ECh. 10.4 - Volume of an ellipsoid Suppose that the ellipse...Ch. 10.4 - Area of a sector of a hyperbola Consider the...Ch. 10.4 - Volume of a hyperbolic cap Consider the region R...Ch. 10.4 - Prob. 82ECh. 10.4 - Prob. 83ECh. 10.4 - Golden Gate Bridge Completed in 1937, San...Ch. 10.4 - Prob. 85ECh. 10.4 - Prob. 86ECh. 10.4 - Prob. 87ECh. 10.4 - Prob. 88ECh. 10.4 - Shared asymptotes Suppose that two hyperbolas with...Ch. 10.4 - Focal chords A focal chord of a conic section is a...Ch. 10.4 - Focal chords A focal chord of a conic section is a...Ch. 10.4 - Focal chords A focal chord of a conic section is a...Ch. 10.4 - Prob. 93ECh. 10.4 - Prob. 94ECh. 10.4 - Confocal ellipse and hyperbola Show that an...Ch. 10.4 - Approach to asymptotes Show that the vertical...Ch. 10.4 - Prob. 97ECh. 10.4 - Prob. 98ECh. 10.4 - Prob. 99ECh. 10 - Explain why or why not Determine whether the...Ch. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 6RECh. 10 - Prob. 7RECh. 10 - Prob. 8RECh. 10 - Eliminating the parameter Eliminate the parameter...Ch. 10 - Prob. 10RECh. 10 - Parametric description Write parametric equations...Ch. 10 - Parametric description Write parametric equations...Ch. 10 - Prob. 13RECh. 10 - Prob. 14RECh. 10 - Parametric description Write parametric equations...Ch. 10 - Parametric description Write parametric equations...Ch. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Prob. 18RECh. 10 - Prob. 19RECh. 10 - Sets in polar coordinates Sketch the following...Ch. 10 - Prob. 21RECh. 10 - Prob. 22RECh. 10 - Polar conversion Write the equation...Ch. 10 - Polar conversion Consider the equation r = 4/(sin ...Ch. 10 - Prob. 25RECh. 10 - Prob. 26RECh. 10 - Prob. 27RECh. 10 - Slopes of tangent lines a. Find all points where...Ch. 10 - Slopes of tangent lines a. Find all points where...Ch. 10 - Slopes of tangent lines a. Find all points where...Ch. 10 - Prob. 31RECh. 10 - The region enclosed by all the leaves of the rose...Ch. 10 - The region enclosed by the limaon r = 3 cosCh. 10 - The region inside the limaon r = 2 + cos and...Ch. 10 - Prob. 35RECh. 10 - Prob. 36RECh. 10 - The area that is inside the cardioid r = 1 + cos ...Ch. 10 - Prob. 38RECh. 10 - Prob. 39RECh. 10 - Prob. 40RECh. 10 - Conic sections a. Determine whether the following...Ch. 10 - Prob. 42RECh. 10 - Prob. 43RECh. 10 - Prob. 44RECh. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Prob. 46RECh. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Tangent lines Find an equation of the line tangent...Ch. 10 - Prob. 49RECh. 10 - Prob. 50RECh. 10 - Prob. 51RECh. 10 - Prob. 52RECh. 10 - Prob. 53RECh. 10 - Prob. 54RECh. 10 - Eccentricity-directrix approach Find an equation...Ch. 10 - Prob. 56RECh. 10 - Prob. 57RECh. 10 - Prob. 58RECh. 10 - Prob. 59RECh. 10 - Prob. 60RECh. 10 - Prob. 61RECh. 10 - Prob. 62RECh. 10 - Prob. 63RECh. 10 - Prob. 64RECh. 10 - Prob. 65RECh. 10 - Prob. 66RECh. 10 - Prob. 67RECh. 10 - Prob. 68RECh. 10 - Prob. 69RECh. 10 - Prob. 70RECh. 10 - Prob. 71RE
Additional Math Textbook Solutions
Find more solutions based on key concepts
The area and perimeter of the diagram below:
Pre-Algebra Student Edition
True or False? In Exercises 5–8, determine whether the statement is true or false. If it is false, rewrite it a...
Elementary Statistics: Picturing the World (7th Edition)
A child has 12 blocks, of which 6 are black, 4 are red, 1 is white, and 1 is blue. If the child puts the blocks...
A First Course in Probability (10th Edition)
Find the volumes of the solids generated by revolving the shaded regions in Exercises 39 and 40 about the indic...
University Calculus: Early Transcendentals (4th Edition)
For a population containing N=902 individual, what code number would you assign for a. the first person on the ...
Basic Business Statistics, Student Value Edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 4. Let F RNR be a mapping. (i) x ЄRN ? (ii) : What does it mean to say that F is differentiable at a point [1 Mark] In Theorem 5.4 in the Lecture Notes we proved that if F is differentiable at a point x E RN then F is continuous at x. Proof. Let (n) CRN be a sequence such that xn → x ЄERN as n → ∞. We want to show that F(xn) F(x), which means F is continuous at x. Denote hnxn - x, so that ||hn|| 0. Thus we find ||F(xn) − F(x)|| = ||F(x + hn) − F(x)|| * ||DF (x)hn + R(hn) || (**) ||DF(x)hn||+||R(hn)||| → 0, because the linear mapping DF(x) is continuous and for all large nЄ N, (***) ||R(hn) || ||R(hn) || ≤ → 0. ||hn|| (a) Explain in details why ||hn|| → 0. [3 Marks] (b) Explain the steps labelled (*), (**), (***). [6 Marks]arrow_forward4. In Theorem 5.4 in the Lecture Notes we proved that if F: RN → Rm is differentiable at x = RN then F is continuous at x. Proof. Let (xn) CRN be a sequence such that x → x Є RN as n → ∞. We want F(x), which means F is continuous at x. to show that F(xn) Denote hn xnx, so that ||hn||| 0. Thus we find ||F (xn) − F(x) || (*) ||F(x + hn) − F(x)|| = ||DF(x)hn + R(hn)|| (**) ||DF(x)hn|| + ||R(hn) || → 0, because the linear mapping DF(x) is continuous and for all large n = N, |||R(hn) || ≤ (***) ||R(hn)|| ||hn|| → 0. Explain the steps labelled (*), (**), (***) [6 Marks] (ii) Give an example of a function F: RR such that F is contin- Total marks 10 uous at x=0 but F is not differentiable at at x = 0. [4 Marks]arrow_forward3. Let f R2 R be a function. (i) Explain in your own words the relationship between the existence of all partial derivatives of f and differentiability of f at a point x = R². (ii) Consider R2 → R defined by : [5 Marks] f(x1, x2) = |2x1x2|1/2 Show that af af -(0,0) = 0 and -(0, 0) = 0, Jx1 მx2 but f is not differentiable at (0,0). [10 Marks]arrow_forward
- (1) Write the following quadratic equation in terms of the vertex coordinates.arrow_forwardThe final answer is 8/π(sinx) + 8/3π(sin 3x)+ 8/5π(sin5x)....arrow_forwardKeity x२ 1. (i) Identify which of the following subsets of R2 are open and which are not. (a) A = (2,4) x (1, 2), (b) B = (2,4) x {1,2}, (c) C = (2,4) x R. Provide a sketch and a brief explanation to each of your answers. [6 Marks] (ii) Give an example of a bounded set in R2 which is not open. [2 Marks] (iii) Give an example of an open set in R2 which is not bounded. [2 Marksarrow_forward
- 2. (i) Which of the following statements are true? Construct coun- terexamples for those that are false. (a) sequence. Every bounded sequence (x(n)) nEN C RN has a convergent sub- (b) (c) (d) Every sequence (x(n)) nEN C RN has a convergent subsequence. Every convergent sequence (x(n)) nEN C RN is bounded. Every bounded sequence (x(n)) EN CRN converges. nЄN (e) If a sequence (xn)nEN C RN has a convergent subsequence, then (xn)nEN is convergent. [10 Marks] (ii) Give an example of a sequence (x(n))nEN CR2 which is located on the parabola x2 = x², contains infinitely many different points and converges to the limit x = (2,4). [5 Marks]arrow_forward2. (i) What does it mean to say that a sequence (x(n)) nEN CR2 converges to the limit x E R²? [1 Mark] (ii) Prove that if a set ECR2 is closed then every convergent sequence (x(n))nen in E has its limit in E, that is (x(n)) CE and x() x x = E. [5 Marks] (iii) which is located on the parabola x2 = = x x4, contains a subsequence that Give an example of an unbounded sequence (r(n)) nEN CR2 (2, 16) and such that x(i) converges to the limit x = (2, 16) and such that x(i) # x() for any i j. [4 Marksarrow_forward1. (i) which are not. Identify which of the following subsets of R2 are open and (a) A = (1, 3) x (1,2) (b) B = (1,3) x {1,2} (c) C = AUB (ii) Provide a sketch and a brief explanation to each of your answers. [6 Marks] Give an example of a bounded set in R2 which is not open. (iii) [2 Marks] Give an example of an open set in R2 which is not bounded. [2 Marks]arrow_forward
- 2. if limit. Recall that a sequence (x(n)) CR2 converges to the limit x = R² lim ||x(n)x|| = 0. 818 - (i) Prove that a convergent sequence (x(n)) has at most one [4 Marks] (ii) Give an example of a bounded sequence (x(n)) CR2 that has no limit and has accumulation points (1, 0) and (0, 1) [3 Marks] (iii) Give an example of a sequence (x(n))neN CR2 which is located on the hyperbola x2 1/x1, contains infinitely many different Total marks 10 points and converges to the limit x = (2, 1/2). [3 Marks]arrow_forward3. (i) Consider a mapping F: RN Rm. Explain in your own words the relationship between the existence of all partial derivatives of F and dif- ferentiability of F at a point x = RN. (ii) [3 Marks] Calculate the gradient of the following function f: R2 → R, f(x) = ||x||3, Total marks 10 where ||x|| = √√√x² + x/2. [7 Marks]arrow_forward1. (i) (ii) which are not. What does it mean to say that a set ECR2 is closed? [1 Mark] Identify which of the following subsets of R2 are closed and (a) A = [-1, 1] × (1, 3) (b) B = [-1, 1] x {1,3} (c) C = {(1/n², 1/n2) ER2 | n EN} Provide a sketch and a brief explanation to each of your answers. [6 Marks] (iii) Give an example of a closed set which does not have interior points. [3 Marks]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY