If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. Find the area of the surface generated by revolving the curve x = cos 2 t , y = sin 2 t 0 ≤ t ≤ π / 2 about the y -axis.
If f ′ t and g ′ t are continuous functions, and if no segment of the curve x = f t , y = g t a ≤ t ≤ b is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x -axis is S = ∫ a b 2 π y d x d t 2 + d y d t 2 d t and the area of the surface generated by revolving the curve about the y -axis is S = ∫ a b 2 π x d x d t 2 + d y d t 2 d t [The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises. Find the area of the surface generated by revolving the curve x = cos 2 t , y = sin 2 t 0 ≤ t ≤ π / 2 about the y -axis.
If
f
′
t
and
g
′
t
are continuous functions, and if no segment of the curve
x
=
f
t
,
y
=
g
t
a
≤
t
≤
b
is traced more than once, then it can be shown that the area of the surface generated by revolving this curve about the x-axis is
S
=
∫
a
b
2
π
y
d
x
d
t
2
+
d
y
d
t
2
d
t
and the area of the surface generated by revolving the curve about the y-axis is
S
=
∫
a
b
2
π
x
d
x
d
t
2
+
d
y
d
t
2
d
t
[The derivations are similar to those used to obtain Formulas (4) and (5) in Section 6.5.] Use the formulas above in these exercises.
Find the area of the surface generated by revolving the curve
x
=
cos
2
t
,
y
=
sin
2
t
0
≤
t
≤
π
/
2
about the y-axis.
Robbie
Bearing Word Problems
Angles
name:
Jocelyn
date: 1/18
8K
2. A Delta airplane and an SouthWest airplane take off from an airport
at the same time. The bearing from the airport to the Delta plane is
23° and the bearing to the SouthWest plane is 152°. Two hours later
the Delta plane is 1,103 miles from the airport and the SouthWest
plane is 1,156 miles from the airport. What is the distance between the
two planes? What is the bearing from the Delta plane to the SouthWest
plane? What is the bearing to the Delta plane from the SouthWest
plane?
Delta
y
SW
Angles
ThreeFourthsMe MATH
2
Find the derivative of the function.
m(t) = -4t (6t7 - 1)6
Find the derivative of the function.
y= (8x²-6x²+3)4
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY