Practical sequences Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. 78. Population growth When a biologist begins a study, a colony of prairie dogs has a population of 250. Regular measurements reveal that each month the prairie dog population increases by 3%. Let p n be the population (rounded to whole numbers) at the end of the n th month, where the initial population is p 0 = 250.
Practical sequences Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. 78. Population growth When a biologist begins a study, a colony of prairie dogs has a population of 250. Regular measurements reveal that each month the prairie dog population increases by 3%. Let p n be the population (rounded to whole numbers) at the end of the n th month, where the initial population is p 0 = 250.
Solution Summary: The author calculates the first five terms of the sequence of partial sums — the initial population is p_0=250, the population increases by r=3% and the second term
Practical sequencesConsider the following situations that generate a sequence.
a.Write out the first five terms of the sequence.
b.Find an explicit formula for the terms of the sequence.
c.Find a recurrence relation that generates the sequence.
d.Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist.
78. Population growth When a biologist begins a study, a colony of prairie dogs has a population of 250. Regular measurements reveal that each month the prairie dog population increases by 3%. Let pn be the population (rounded to whole numbers) at the end of the nth month, where the initial population is p0 = 250.
Use the information to find and compare Δy and dy. (Round your answers to four decimal places.)
y = x4 + 7 x = −3 Δx = dx = 0.01
Δy =
dy =
4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown
in the table. For each problem, approximate the distance the car traveled (in miles) using the given method,
on the provided interval, and with the given number of rectangles or trapezoids, n.
Time (min) 0 6 12 18|24|30|36|42|48|54|60
Speed (mph) 0 10 20 40 60 50 40 30 40 40 65
a.) Left Rectangles, [0, 30] n=5
b.) Right Rectangles, [24, 42] n=3
c.) Midpoint Rectangles, [24, 60] n=3
d.) Trapezoids, [0, 24] n=4
The bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N.
F1
B
a=0.18 m
C
A
0.4 m
-0.4 m-
0.24 m
Determine the reaction at C.
The reaction at C
N Z
F2
D
Chapter 10 Solutions
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.