VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.1, Problem 10.22P

A couple M with a magnitude of 100 N·m is applied as shown to the crank of the engine system. Knowing that AB = 50 mm and BC = 200 mm, determine the force P required to maintain the equilibrium of the system when (a) θ = 60°, (b) θ = 120°.

Chapter 10.1, Problem 10.22P, A couple M with a magnitude of 100 Nm isapplied as shown to the crank of the engine system.Knowing

Fig. P10.22

(a)

Expert Solution
Check Mark
To determine

Find the magnitude of the force P required to maintain the equilibrium.

Answer to Problem 10.22P

The magnitude of the force P required is 2.05kN()_.

Explanation of Solution

Given information:

The magnitude of the couple M is 100Nm.

The distance between the point A and B is 50 mm.

The distance between the point B and C is 200 mm.

The value of the angle θ=60°.

Calculation:

Show the free-body diagram of the engine system as in Figure 1.

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS, Chapter 10.1, Problem 10.22P

Consider the geometry of the Figure 1.

Use the Law of sines;

ABsinϕ=BCsinθsinϕ=ABBCsinθ (1)

Differentiate the equation;

cosϕδϕ=ABBCcosθδθδϕ=ABBCcosθcosϕδθ

Find the horizontal displacement (xC) at point C using the relation.

xC=ABcosθ+BCcosϕ

Differentiate the equation;

δxC=ABsinθδθBCsinϕδϕ

Substitute ABBCsinθ for sinϕ and ABBCcosθcosϕδθ for δϕ.

δxC=ABsinθδθBC(ABBCsinθ)(ABBCcosθcosϕδθ)=ABsinθδθ(ABsinθ)(ABBCcosθcosϕδθ)

Use the principle of virtual work;

δU=0PδxCMδθ=0

Substitute [ABsinθδθ(ABsinθ)(ABBCcosθcosϕδθ)] for δxC.

P[ABsinθδθ(ABsinθ)(ABBCcosθcosϕδθ)]Mδθ=0P[ABsinθ+(ABsinθ)(ABBCcosθcosϕ)]M=0 (2)

Substitute 50 mm for AB, 200 mm for BC, and 60° for θ in Equation (1).

sinϕ=50200×sin60°ϕ=12.504°

Substitute 100Nm for M, 50 mm for AB, 200 mm for BC, 12.504° for ϕ, and 60° for θ in Equation (2).

P[50sin60°+(50sin60°)(50200cos60°cos12.504°)]100Nm×1,000mm1m=0P[43.30127+5.54416]100,000=0P=2.05×103N×1kN1,000NP=2.05kN()

Therefore, the magnitude of the force P required is 2.05kN()_.

(b)

Expert Solution
Check Mark
To determine

Find the magnitude of the force P required to maintain the equilibrium.

Answer to Problem 10.22P

The magnitude of the force P required is 2.65kN()_.

Explanation of Solution

Given information:

The magnitude of the couple M is 100Nm.

The distance between the point A and B is 50 mm.

The distance between the point B and C is 200 mm.

The value of the angle θ=120°.

Calculation:

Refer part (a) for calculation;

Substitute 50 mm for AB, 200 mm for BC, and 120° for θ in Equation (1).

sinϕ=50200×sin120°ϕ=12.504°

Substitute 100Nm for M, 50 mm for AB, 200 mm for BC, 12.504° for ϕ, and 120° for θ in Equation (2).

P[50sin120°+(50sin120°)(50200cos120°cos12.504°)]100Nm×1,000mm1m=0P[43.301275.54416]100,000=0P=2.65×103N×1kN1,000NP=2.65kN()

Therefore, the magnitude of the force P required is 2.65kN()_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A couple M with a magnitude of 100 N.m is applied as shown to the crank of the engine system. Knowing that AB = 50 mm and BC = 200 mm, determine the force P required to maintain the equilibrium of the system when (a) θ= 60°, (b) θ= 120°.
Collars A and B are connected by a 25-in.-long wire and can slide freely on frictionless rods. Determine the distances x and z for which the equilibrium of the system is maintained when P=120 lb and Q=60 lb.
The two-bar linkage shown is supported by a pin and bracket at B and a collar at D that slides freely on a vertical rod. Determine the force P required to maintain the equilibrium of the linkage.

Chapter 10 Solutions

VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS

Ch. 10.1 - Prob. 10.11PCh. 10.1 - Prob. 10.12PCh. 10.1 - Prob. 10.13PCh. 10.1 - Prob. 10.14PCh. 10.1 - Prob. 10.15PCh. 10.1 - Prob. 10.16PCh. 10.1 - Prob. 10.17PCh. 10.1 - Prob. 10.18PCh. 10.1 - Prob. 10.19PCh. 10.1 - Prob. 10.20PCh. 10.1 - Prob. 10.21PCh. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - Prob. 10.25PCh. 10.1 - Prob. 10.26PCh. 10.1 - Prob. 10.27PCh. 10.1 - Prob. 10.28PCh. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Prob. 10.32PCh. 10.1 - Prob. 10.33PCh. 10.1 - Prob. 10.34PCh. 10.1 - Prob. 10.35PCh. 10.1 - Prob. 10.36PCh. 10.1 - Prob. 10.37PCh. 10.1 - Prob. 10.38PCh. 10.1 - Prob. 10.39PCh. 10.1 - Prob. 10.40PCh. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - Prob. 10.43PCh. 10.1 - Prob. 10.44PCh. 10.1 - Prob. 10.45PCh. 10.1 - Prob. 10.46PCh. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Prob. 10.48PCh. 10.1 - Prob. 10.49PCh. 10.1 - Prob. 10.50PCh. 10.1 - Prob. 10.51PCh. 10.1 - Prob. 10.52PCh. 10.1 - Prob. 10.53PCh. 10.1 - Prob. 10.54PCh. 10.1 - Prob. 10.55PCh. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Prob. 10.58PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Prob. 10.60PCh. 10.2 - Prob. 10.61PCh. 10.2 - Prob. 10.62PCh. 10.2 - Prob. 10.63PCh. 10.2 - Prob. 10.64PCh. 10.2 - Prob. 10.65PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.38....Ch. 10.2 - Prob. 10.67PCh. 10.2 - Prob. 10.68PCh. 10.2 - Prob. 10.69PCh. 10.2 - Prob. 10.70PCh. 10.2 - Prob. 10.71PCh. 10.2 - Prob. 10.72PCh. 10.2 - Prob. 10.73PCh. 10.2 - Prob. 10.74PCh. 10.2 - Prob. 10.75PCh. 10.2 - Prob. 10.76PCh. 10.2 - Prob. 10.77PCh. 10.2 - Prob. 10.78PCh. 10.2 - Prob. 10.79PCh. 10.2 - Prob. 10.80PCh. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - Prob. 10.83PCh. 10.2 - Prob. 10.84PCh. 10.2 - Prob. 10.85PCh. 10.2 - Prob. 10.86PCh. 10.2 - Prob. 10.87PCh. 10.2 - Prob. 10.88PCh. 10.2 - Prob. 10.89PCh. 10.2 - Prob. 10.90PCh. 10.2 - Prob. 10.91PCh. 10.2 - Prob. 10.92PCh. 10.2 - Prob. 10.93PCh. 10.2 - Prob. 10.94PCh. 10.2 - Prob. 10.95PCh. 10.2 - Prob. 10.96PCh. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Prob. 10.98PCh. 10.2 - Prob. 10.99PCh. 10.2 - Prob. 10.100PCh. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Prob. 10.103RPCh. 10 - Prob. 10.104RPCh. 10 - Prob. 10.105RPCh. 10 - Prob. 10.106RPCh. 10 - Prob. 10.107RPCh. 10 - Prob. 10.108RPCh. 10 - Prob. 10.109RPCh. 10 - Prob. 10.110RPCh. 10 - Prob. 10.111RPCh. 10 - Prob. 10.112RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License