VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
11th Edition
ISBN: 9781259633133
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.1, Problem 10.54P
To determine
Find the force representing the reaction at D using the virtual work method.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6 .129
Question 4:
(a) (i) State the Principle of Moment (Varignon's Theorem).
(ii) Prove that the moment of a couple is the same about any axis perpendicular to the
plane of action of the couple.
(b) A uniform rod Whose centre of gravity G divides it into the ratio AG : GB = a :b is in
limiting equilibrium at an angle a with the horizontal with its upper end B resting against a
smooth peg and its lower end A attached to a light cord, which is fastened to a point C on
the same level as B. Prove that the angle B at which the cord is inclined to the horizontal is
given by the equation
a+b
b
tanß =
tana
cot a
a
a
Question 5:
(a) From Lesotho Bank tower an object was observed on the ground at a depression o below
the horizon. A gun was fired at an elevation a, but the shot missing the object, stuck the
ground at a point whose depression was y. Prove that the correct elevation 0 of the gun is
given by
sin(20 +0) + sin(o)
sin(2a+0) + sin(o)
sin y (1+ cos(20))
sin o (1+cos(2y))
L
(a)
a) Using the method of joints, determine the force
in each member of the truss shown if the force L
is applied at (a) (on top of the truss). State
А
4d
В
whether each member is in tension or
compression.
b) Using the method of joints, determine the force
in each member of the truss shown if instead
the force L is applied at (b) (on the bottom of
the truss). State whether each member is in
tension or compression.
3d
C
I(b)
L
Chapter 10 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
Ch. 10.1 - Determine the vertical force P that must be...Ch. 10.1 - Determine the horizontal force P that must be...Ch. 10.1 - Prob. 10.3PCh. 10.1 - Prob. 10.4PCh. 10.1 - Prob. 10.5PCh. 10.1 - A spring of constant 15 kN/m connects points C and...Ch. 10.1 - The two-bar linkage shown is supported by a pin...Ch. 10.1 - Prob. 10.8PCh. 10.1 - Prob. 10.9PCh. 10.1 - Prob. 10.10P
Ch. 10.1 - Prob. 10.11PCh. 10.1 - Prob. 10.12PCh. 10.1 - Prob. 10.13PCh. 10.1 - Prob. 10.14PCh. 10.1 - Prob. 10.15PCh. 10.1 - Prob. 10.16PCh. 10.1 - Prob. 10.17PCh. 10.1 - Prob. 10.18PCh. 10.1 - Prob. 10.19PCh. 10.1 - Prob. 10.20PCh. 10.1 - Prob. 10.21PCh. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - Prob. 10.25PCh. 10.1 - Prob. 10.26PCh. 10.1 - Prob. 10.27PCh. 10.1 - Prob. 10.28PCh. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Prob. 10.32PCh. 10.1 - Prob. 10.33PCh. 10.1 - Prob. 10.34PCh. 10.1 - Prob. 10.35PCh. 10.1 - Prob. 10.36PCh. 10.1 - Prob. 10.37PCh. 10.1 - Prob. 10.38PCh. 10.1 - Prob. 10.39PCh. 10.1 - Prob. 10.40PCh. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - Prob. 10.43PCh. 10.1 - Prob. 10.44PCh. 10.1 - Prob. 10.45PCh. 10.1 - Prob. 10.46PCh. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Prob. 10.48PCh. 10.1 - Prob. 10.49PCh. 10.1 - Prob. 10.50PCh. 10.1 - Prob. 10.51PCh. 10.1 - Prob. 10.52PCh. 10.1 - Prob. 10.53PCh. 10.1 - Prob. 10.54PCh. 10.1 - Prob. 10.55PCh. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Prob. 10.58PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Prob. 10.60PCh. 10.2 - Prob. 10.61PCh. 10.2 - Prob. 10.62PCh. 10.2 - Prob. 10.63PCh. 10.2 - Prob. 10.64PCh. 10.2 - Prob. 10.65PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.38....Ch. 10.2 - Prob. 10.67PCh. 10.2 - Prob. 10.68PCh. 10.2 - Prob. 10.69PCh. 10.2 - Prob. 10.70PCh. 10.2 - Prob. 10.71PCh. 10.2 - Prob. 10.72PCh. 10.2 - Prob. 10.73PCh. 10.2 - Prob. 10.74PCh. 10.2 - Prob. 10.75PCh. 10.2 - Prob. 10.76PCh. 10.2 - Prob. 10.77PCh. 10.2 - Prob. 10.78PCh. 10.2 - Prob. 10.79PCh. 10.2 - Prob. 10.80PCh. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - Prob. 10.83PCh. 10.2 - Prob. 10.84PCh. 10.2 - Prob. 10.85PCh. 10.2 - Prob. 10.86PCh. 10.2 - Prob. 10.87PCh. 10.2 - Prob. 10.88PCh. 10.2 - Prob. 10.89PCh. 10.2 - Prob. 10.90PCh. 10.2 - Prob. 10.91PCh. 10.2 - Prob. 10.92PCh. 10.2 - Prob. 10.93PCh. 10.2 - Prob. 10.94PCh. 10.2 - Prob. 10.95PCh. 10.2 - Prob. 10.96PCh. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Prob. 10.98PCh. 10.2 - Prob. 10.99PCh. 10.2 - Prob. 10.100PCh. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Prob. 10.103RPCh. 10 - Prob. 10.104RPCh. 10 - Prob. 10.105RPCh. 10 - Prob. 10.106RPCh. 10 - Prob. 10.107RPCh. 10 - Prob. 10.108RPCh. 10 - Prob. 10.109RPCh. 10 - Prob. 10.110RPCh. 10 - Prob. 10.111RPCh. 10 - Prob. 10.112RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 7.1 3D Equilibrium The frame is fixed to a support at Point O. Given the applied forces and moments, you are required to: a) Determine the support reactions at Point O 30% 185 N 310 N 285 mm 240 mm 410 mm 74 Nmarrow_forwardProblem 5 FN 4.5N K 20 B. 60 7.5N A small ring Pis threaded on a fixed smooth horizontal rod AB. Three horizontal forces of magnitudes 4.5N, 7.5N and FN act on P (see diagram). () Given that these three forces are in equilibrium, find the values of F and 0. (i) It is given instead that the values of F and 0 are 9.5 and 30 respectively, and the acceleration of the ring is 1.5 ms. Find the mass of the ring.arrow_forwardFor the shown frame and loads P=972 KN and Q=1944 KN, 3 m 3 m→ B 1.5 m A 1 m 8 m 6 m magnitude of y-component of reaction at B (KN) a. 216 b. 270 c. 324 d. 337.5 е. 378 magnitude of x-component of reaction at B (KN) a. 5616 b. 2808 c. 7020 d. 8424 e. 9828 magnitude of x-component of reaction at C (KN) magnitude of y-component of reaction at C (KN) magnitude of y-component of reaction at A (KN)arrow_forward
- 9. A man is trying to pull the sled by applying a force of 500 N, as shown. The weight of the stone and the sled is 800 N while the sled is about to slide (i.e., it is still in equilibrium). Determine the magnitude of the reaction force R. a. b. W = 800 N 650 N 700 N 0 R P = 500 N 30⁰ Cc. d. 750 N 800 Narrow_forwardDetermine the force in member BD and the components of the reaction at C.arrow_forwardCan you please do 6.89 Draw the FBD and solve for the problem. Thanksarrow_forward
- 71 of 923 > Fig. 10.123 E 6.126 Solve Prob. 6.125 when (a) ẞ = 0, (b) f = 6°. 6.127 The press shown is used to emboss a small seal at E. Knowing that P = 250 N, determine (a) the vertical component of the force exerted on the seal, (b) the reaction at A. Answer Fig. P6.127 and P6.128 = 200 mm A B 60° D -20° 400 mm 15° Aa Carrow_forwardPractice Problem 4.4.8: The 90-kg man, whose center of gravity is at G, is climbing a uniform ladder. The length of the ladder is 5 m, and its mass is 20 kg. Friction may be neglected. (a) Compute the magnitudes of the reactions at A and B for x = 1.5m.(b) Find the distance x for which the ladder will be ready to fall. G L=5 m 1.2 m -1.6 m–|arrow_forwardDetermine the horizontal and vertical components of reaction which the pins exert on member AB of the frame. 24.1 The magnitude of the component of reaction Bx is Blank 1 kN. 24.2 The magnitude of the component of reaction By is Blank 2 kN. 24.3 The magnitude of the component of reaction Ax is Blank 3 kN. 24.4 The magnitude of the component of reaction Ay is Blank 4 kN.arrow_forward
- 21:34 e +Assignment 1.pdf 2.7 Three spheres A, B and C having their diameters 500 mm, 500 mm and 800 mm, respectively are placed in a trench with smooth side walls and floor as shown in Fig. 2.34. The centre-to-centre distance of spheres A and B is 600 mm. The cylinders A, B and C weigh 4 kN, 4 kN and 8 kN respectively. Determine the reactions developed at contact points P, Q, R and S. DB 600-400 Sind-48 600+400 Aニイ1-53° [Ans. Rp = 2.15 kN, R. = 7.44 kN, %3D %3D Rs = 7.03 kN and R = 2.29 kN] %3D 2.8 Three smooth snhoron uhin 200arrow_forwardA cylinder weighing 600 N is supported by a pin-connected two-bar frame. Determine the forces exerted on the cylinder by the contacting surfaces. Also, find the reactions at support A and C.arrow_forwardThe two-bar linkage shown is supported by a pin and bracket at B and a collar at D that slides freely on a vertical rod. Determine the force P required to maintain the equilibrium of the linkage.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License