Interpretation:
The amount of helium gas present under given conditions should be determined.
Concept introduction:
Ideal gas Equation:
Any gas can be described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained.
It is referred as ideal gas equation.
Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases.
Boyle’s Law:
At given constant temperature conditions the mass of given ideal gas in inversely proportional to the volume.
Charles’s Law:
At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.
Avogadro’s Hypothesis:
Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
Van der Waal’s gas equation:
The van der Waal equation describes the ideal gas as it approaches to zero. The van der Waal equation contains correction terms a and b for the intermolecular forces and molecular size respectively.
The van der Waal equation is as follows,
Trending nowThis is a popular solution!
Chapter 10 Solutions
Chemistry & Chemical Reactivity
- 2. The volume of a gas sample is 235 mL at a temperature of 25 ℃. At what temperature would that same gas sample have a volume of 310. mL, if the pressure of the gas sample is held constant? −47.0 ℃ 69.4 ℃ 33.1 ℃ 120.℃arrow_forwardIf equal masses of O2 and N2 are placed in separate containers of equal volume at the same temperature, which of the following statements is true? If false, explain why it is false. (a) The pressure in the flask containing N2 is greater than that in the flask containing O2. (b) There are more molecules in the flask containing O2 than in the flask containing N2.arrow_forwardWhich of the following statements is(are) true? a. If the number of moles of a gas is doubled, the volume will double, assuming the pressure and temperature of the gas remain constant. b. If the temperature of a gas increases from 25C to 50C, the volume of the gas would double, assuming that the pressure and the number of moles of gas remain constant. c. The device that measures atmospheric pressure is called a barometer. d. If the volume of a gas decreases by one half, then the pressure would double, assuming that the number of moles and the temperature of the gas remain constant.arrow_forward
- A new boron hydride, BxHy, has been isolated. To find its molar mass, you measure the pressure of the gas in a known volume at a known temperature. The following experimental data are collected: Mass of gas = 12.5 mg Pressure of gas = 24.8 mm Hg Temperature = 25 C Volume of flask = 125 mL Which formula corresponds to the calculated molar mass? (a) B2H6 (b) B4H10 (c) B5H9 (d) B6H10 (e) Bl0H14arrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardAs 1 g of (lie radioactive element radium decays over 1 year. k produces 1.161018 alpha particles (helium nuclei). Each alpha particle becomes an atom of helium gas. What is the pressure ¡n pascal of the helium gas produced if it occupies a volume of 125 mL at a temperature of 25 C?arrow_forward
- A certain flexible weather balloon contains helium gas at a volume of 855 L. Initially, the balloon is at sea level where the temperature is 25C and the barometric pressure is 730 torr. The balloon then rises to an altitude of 6000 ft, where the pressure is 605 torr and the temperature is 15C. What is the change in volume of the balloon as it ascends from sea level to 6000 ft?arrow_forwardMany nitrate salts can be decomposed by heating. For example, blue, anhydrous copper(II) nitrate produces the gases nitrogen dioxide and oxygen when heated. In the laboratory, you find that a sample of this salt produced a 0.195-g mixture of gaseous NO2 and O2 with a total pressure of 725 mm Hg at 35 C in a 125-mL flask (and black, solid CuO was left as a residue). What is the average molar mass of the gas mixture? What are the mole fractions of NO2 and O2 in the mixture? What amount of each gas b in the mixture? Do these amounts reflect the relative amounts of NO2 and O2 expected based on the balanced equation? Is it possible that the fact that some NO2 molecules combine to give N2O4 plays a role? Heating copper(II) nitrate produces nitrogen dioxide and oxygen gas and leaves a residue of copper(ll) oxide.arrow_forward93 The complete combustion of octane can be used as a model for the burning of gasoline: 2C8H18+25O216CO2+18H2O Assuming that this equation provides a reasonable model of the actual combustion process, what volume of air at 1.0 atm and 25°C must be taken into an engine to burn 1 gallon of gasoline? (The partial pressure of oxygen in air is 0.21 atm and the density of liquid octane is 0.70 g/mL.)arrow_forward
- A 20.0L stainless steel container at 25C was charged with 2.00 atm of hydrogen gas and 3.00 atm of oxygen gas. A spark ignited the mixture, producing water. What is the pressure in the tank at 25C? If the exact same experiment were performed, but the temperature was 125C instead of 25C, what would be the pressure in the tank?arrow_forwardÀ 2.50-L volume of hydrogen measured at —196 C is warmed to 100 C. Calculate the volume of the gas at the higher temperature, assuming no change in pressure.arrow_forwardAmmonia gas is synthesized by combining hydrogen and nitrogen: 3 H2(g) + N2(g) 2 NH3(g) (a) If you want to produce 562 g of NH3, what volume of H2 gas, at 56 C and 745 mm Hg, is required? (b) Nitrogen for this reaction will be obtained from air. What volume of air, measured at 29 C and 745 mm Hg pressure, will be required to provide the nitrogen needed to produce 562 g of NH3? Assume the sample of air contains 78.1 mole % N2.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning