From the given set of conditions the best condition that the given Cl 2 gas will deviate least from its ideal gas behavior should be determined. Concept introduction: Ideal gas Equation: Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation. V ∝ nT P V = R nT P PV = nRT where, n = molesofgas P = pressure T = temperature R = gas constant Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases. Boyle’s Law: At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume. Charles’s Law: At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature. Avogadro’s Hypothesis: Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
From the given set of conditions the best condition that the given Cl 2 gas will deviate least from its ideal gas behavior should be determined. Concept introduction: Ideal gas Equation: Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation. V ∝ nT P V = R nT P PV = nRT where, n = molesofgas P = pressure T = temperature R = gas constant Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases. Boyle’s Law: At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume. Charles’s Law: At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature. Avogadro’s Hypothesis: Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
Interpretation: From the given set of conditions the best condition that the given Cl2 gas will deviate least from its ideal gas behavior should be determined.
Concept introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
V ∝nTPV = RnTPPV = nRTwhere,n = molesofgasP = pressureT = temperatureR = gas constant
Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases.
Boyle’s Law:
At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.
Charles’s Law:
At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.
Avogadro’s Hypothesis:
Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
Draw a structure using wedges and dashes for the following compound:
H-
Et
OH
HO-
H
H-
Me
OH
Which of the following molecules are NOT typical carbohydrates? For the molecules that are
carbohydrates, label them as an aldose or ketose.
HO
Он
ОН ОН
Он
ОН
но
ΤΗ
HO
ОН
HO
eve
Он он
ОН
ОН
ОН
If polyethylene has an average molecular weight of 25,000 g/mol, how many repeat units
are present?
Draw the a-anomer cyclized pyranose Haworth projection of the below hexose. Circle the
anomeric carbons. Number the carbons on the Fischer and Haworth projections. Assign R
and S for each chiral center.
HO
CHO
-H
HO
-H
H-
-OH
H
-OH
CH₂OH
Draw the ẞ-anomer cyclized furanose Haworth projection for the below hexose. Circle the
anomeric carbons. Number the carbons on the Fischer and Haworth projections.
HO
CHO
-H
H
-OH
HO
-H
H
-OH
CH₂OH
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell