Chemistry & Chemical Reactivity
9th Edition
ISBN: 9781133949640
Author: John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 109SCQ
You have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2.
- (a) In which cylinder is the pressure greater at 25 °C?
- (b) Which cylinder contains the greater number of molecules?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A metal cylinder with a capacity of 6.0 L is filled with compressed propane (C3H8). The pressure and temperature of the cylinder when it was initially filled were 120 atm and 75 ◦C, respectively. The molar mass of carbon is 12 g·mol−1 and the molar mass of hydrogen is 1 g·mol−1.
a) How many moles of propane are in the cylinder?
b) What is the mass of the propane inside the cylinder?
c) After some time, the cylinder and its contents cool to 25 ◦C. What is the pressure in the
cylinder after it has cooled?
Jj.200.
(a) A rigid tank contains 1.60 moles of helium, which can be treated as an ideal gas, at a pressure of 28.0 atm. While the tank and gas maintain a constant volume and temperature, a number of moles are removed from the tank, reducing the pressure to 5.00 atm. How many moles are removed?
mol
(b) What If? In a separate experiment beginning from the same initial conditions, including a temperature T, of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 28.0 atm to 5.00 atm. What is the final temperature (in °C) of the gas?
°C
Chapter 10 Solutions
Chemistry & Chemical Reactivity
Ch. 10.1 - At the summit of Mount Everest (altitude = 8848...Ch. 10.1 - Prob. 1RCCh. 10.1 - Prob. 2RCCh. 10.2 - A large balloon contains 65.0 L of helium gas at...Ch. 10.2 - Prob. 2CYUCh. 10.2 - You have a 22-L cylinder of helium at a pressure...Ch. 10.2 - Prob. 4CYUCh. 10.2 - Prob. 1RCCh. 10.2 - 2. The volume of a gas sample is 235 mL at a...Ch. 10.2 - Prob. 3RC
Ch. 10.3 - Prob. 1CYUCh. 10.3 - At 1.00 atm and 25 C, the density of dry air is...Ch. 10.3 - A 0.105-g sample of a gaseous compound has a...Ch. 10.3 - Which gas has the greatest density at 25 and 1.00...Ch. 10.3 - Prob. 2RCCh. 10.3 - Prob. 3RCCh. 10.4 - Prob. 1CYUCh. 10.4 - Diborane reacts with O2 to give boric oxide and...Ch. 10.4 - 2. If you mix 1.5 L of B2H6 with 4.0 L of O2, each...Ch. 10.5 - The halothane-oxygen mixture described in this...Ch. 10.5 - Prob. 1RCCh. 10.6 - Prob. 1CYUCh. 10.6 - What is the rms speed of chlorine molecules at...Ch. 10.6 - 2. The species identified with each curve in the...Ch. 10.7 - Prob. 1CYUCh. 10.7 - In Figure 10.17, ammonia gas and hydrogen chloride...Ch. 10.8 - Prob. 1RCCh. 10.8 - At sea level, atmospheric pressure is 1.00 atm....Ch. 10.8 - Prob. 2QCh. 10.8 - To stay aloft, a blimp must achieve neutral...Ch. 10 - Pressure (See Section 10.1 and Example 10.1.) The...Ch. 10 - The average barometric pressure at an altitude of...Ch. 10 - Indicate which represents the higher pressure in...Ch. 10 - Put the following in order of increasing pressure:...Ch. 10 - Prob. 5PSCh. 10 - Prob. 6PSCh. 10 - You have 3.5 L of NO at a temperature of 22.0 C....Ch. 10 - Prob. 8PSCh. 10 - Prob. 9PSCh. 10 - You have a sample of CO2 in flask A with a volume...Ch. 10 - You have a sample of gas in a flask with a volume...Ch. 10 - A sample of gas occupies 135 mL at 22.5 C; the...Ch. 10 - One of the cylinders of an automobile engine has a...Ch. 10 - A helium-filled balloon of the type used in...Ch. 10 - Nitrogen monoxide reacts with oxygen to give...Ch. 10 - Ethane bums in air to give H2O and CO2. 2 C2H6(g)...Ch. 10 - A 1.25-g sample of CO2 is contained in a 750.-mL...Ch. 10 - A balloon holds 30.0 kg of helium. What is the...Ch. 10 - A flask is first evacuated so that it contains no...Ch. 10 - Prob. 20PSCh. 10 - Prob. 21PSCh. 10 - Prob. 22PSCh. 10 - Forty miles above Earths surface, the temperature...Ch. 10 - Prob. 24PSCh. 10 - A gaseous organofluorine compound has a density of...Ch. 10 - Prob. 26PSCh. 10 - A 1 007-g sample of an unknown gas exerts a...Ch. 10 - A 0.0130-g sample of a gas with an empirical...Ch. 10 - A new boron hydride, BxHy, has been isolated. To...Ch. 10 - Acetaldehyde is a common liquid compound that...Ch. 10 - Iron reacts with hydrochloric acid to produce...Ch. 10 - Silane, SiH4, reacts with O2 to give silicon...Ch. 10 - Prob. 33PSCh. 10 - The hydrocarbon octane (C8H18) bums to give CO2...Ch. 10 - Prob. 35PSCh. 10 - A self-contained underwater breathing apparatus...Ch. 10 - What is the total pressure in atmospheres of a gas...Ch. 10 - A cylinder of compressed gas is labeled...Ch. 10 - A halothane-oxygen mixture (C2HBrCIF3 + O2) can be...Ch. 10 - A collapsed balloon is filled with He to a volume...Ch. 10 - You have two flasks of equal volume. Flask A...Ch. 10 - Equal masses of gaseous N2 and Ar are placed in...Ch. 10 - If the rms speed of an oxygen molecule is 4.28 ...Ch. 10 - Prob. 44PSCh. 10 - Place the following gases in order of increasing...Ch. 10 - Prob. 46PSCh. 10 - In each pair of gases below, tell which will...Ch. 10 - Prob. 48PSCh. 10 - Prob. 49PSCh. 10 - A sample of uranium fluoride is found to effuse at...Ch. 10 - Prob. 51PSCh. 10 - Prob. 52PSCh. 10 - In the text, it is stated that the pressure of...Ch. 10 - You want to store 165 g of CO2 gas in a 12.5-L...Ch. 10 - Consider a 5.00-L tank containing 325 g of H2O at...Ch. 10 - Consider a 5.00-L tank containing 375 g of Ar at a...Ch. 10 - Complete the following table:Ch. 10 - On combustion, 1.0 L of a gaseous compound of...Ch. 10 - You have a sample of helium gas at 33 C, and you...Ch. 10 - Prob. 60GQCh. 10 - Butyl mercaptan, C4H9SH, has a very bad odor and...Ch. 10 - Prob. 62GQCh. 10 - The temperature of the atmosphere on Mars can be...Ch. 10 - If you place 2.25 g of solid silicon in a 6.56-L...Ch. 10 - What volume (in liters) of O2, measured at...Ch. 10 - Nitroglycerin decomposes into four different gases...Ch. 10 - Ni(CO)4 can be made by reacting finely divided...Ch. 10 - Ethane bums in air to give H2O and CO2. 2 C2H6(g)...Ch. 10 - You have four gas samples: 1. 1.0 L of H2 at STP...Ch. 10 - Propane reacts with oxygen to give carbon dioxide...Ch. 10 - Iron carbonyl can be made by the direct reaction...Ch. 10 - Prob. 72GQCh. 10 - There are five compounds in the family of...Ch. 10 - A miniature volcano can be made in the laboratory...Ch. 10 - The density of air 20 km above Earths surface is...Ch. 10 - Prob. 76GQCh. 10 - Chlorine dioxide, ClO2, reacts with fluorine to...Ch. 10 - A xenon fluoride can be prepared by heating a...Ch. 10 - Prob. 79GQCh. 10 - Prob. 80GQCh. 10 - Prob. 81GQCh. 10 - Carbon dioxide, CO2, was shown lo effuse through a...Ch. 10 - Prob. 84GQCh. 10 - Prob. 85GQCh. 10 - Prob. 86GQCh. 10 - You are given 1.56 g of a mixture of KClO3 and...Ch. 10 - A study of climbers who reached the summit of...Ch. 10 - Nitrogen monoxide reacts with oxygen to give...Ch. 10 - Ammonia gas is synthesized by combining hydrogen...Ch. 10 - Nitrogen trifluoride is prepared by the reaction...Ch. 10 - Chlorine trifluoride, ClF3, is a valuable reagent...Ch. 10 - Prob. 93GQCh. 10 - Prob. 94GQCh. 10 - You have a 550.-mL tank of gas with a pressure of...Ch. 10 - Prob. 96ILCh. 10 - Prob. 97ILCh. 10 - Group 2A metal carbonates are decomposed to the...Ch. 10 - One way to synthesize diborane, B2H6, is the...Ch. 10 - You are given a solid mixture of NaNO2 and NaCl...Ch. 10 - You have 1.249 g of a mixture of NaHCO3 and...Ch. 10 - Prob. 102ILCh. 10 - Many nitrate salts can be decomposed by heating....Ch. 10 - You have a gas, one of the three known...Ch. 10 - Prob. 106ILCh. 10 - A 1.0-L flask contains 10.0 g each of O2 and CO2...Ch. 10 - If equal masses of O2 and N2 are placed in...Ch. 10 - You have two pressure-proof steel cylinders of...Ch. 10 - Prob. 110SCQCh. 10 - Prob. 111SCQCh. 10 - Each of four flasks is filled with a different...Ch. 10 - Prob. 113SCQCh. 10 - The sodium azide required for automobile air bags...Ch. 10 - Prob. 115SCQCh. 10 - Prob. 116SCQ
Additional Science Textbook Solutions
Find more solutions based on key concepts
Determine the de Brogue wavelength of a. an electron moving at 1/10 the speed of light. b. a 400 g Frisbee movi...
Inorganic Chemistry
Draw a Lewis structure for each covalent molecule. a. HBr b. CH3F c. H2O2 d. N2H4 e. C2H6 f. CH2Cl2
Principles of General, Organic, Biological Chemistry
Practice Problem ATTEMPT
Write the rate expressions for each of the following reactions:
(a)
(b)
(c)
Chemistry
1. What did each of the following scientists contribute to our knowledge of the atom?
a. William Crookes
b. E...
Chemistry For Changing Times (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A student experimentally determines the gas law constant, R, by reacting a small piece of magnesium with excess hydrochloric acid and then collecting the hydrogen gas over water in a eudiometer. Based L-atm on experimentally collected data, the student calculates R to equal 0.0832 mol·K L-atm Ideal gas law constant from literature: 0.08206 mol·K (a) Determine the percent error for the student's R-value. Percent error = % (b) For the statements below, identify the possible source(s) of error for this student's trial. The student notices a large air bubble in the eudiometer after collecting the hydrogen gas, but does not dislodge it. The student does not clean the zinc metal with sand paper. The student does not equilibrate the water levels within the eudiometer and the beaker at the end of the reaction. The water level in the eudiometer is 1-inch above the water level in the beaker. The student uses the barometric pressure for the lab to calculate R.arrow_forwardA 5.50-mole sample of NH3 gas is kept in a 1.85-L container at 309 K. If the van der Waals equation is assumed to give the correct answer for the pressure of the gas, calculate the percent error made in using the ideal-gas equation to calculate the pressure. (Use a = 4.17 atm·L2·mol−2 and b = 0.0371 L·mol−1 for the van der Waals equation.)arrow_forwardEffervescent tablets contain both citric acid (C6H8O7) and sodium bicarbonate (NaHCO3) and release carbon dioxide gas when dissolved in water as well as forming trisodium citrate (Na3C6H5O7) and water. A typical effervescent tablet contains 1.00 g of citric acid and 1.92 g sodium bicarbonate. (a) Assuming that carbon dioxide acts as an ideal gas, determine the work done due to the evolution of carbon dioxide by the dissolution of one effervescent tablet in water at 25.0 °C and atmospheric pressure (1 atm i.e. 101325 Pa).arrow_forward
- When limestone (solid CaCO3) is heated, it decomposes into lime (solid CaO) and carbon dioxide gas. This is an extremely useful industrial process of great antiquity, because powdered lime mixed with water is the basis for mortar and concrete - the lime absorbs CO₂ from the air and turns back into hard, durable limestone. Suppose some calcium carbonate is sealed into a limekiln of volume 550. L and heated to 910.0 °C. When the amount of CaCO3 has stopped changing, it is found that 567. g have disappeared. P Calculate the pressure equilibrium constant K, this experiment suggests for the equilibrium between CaCO3 and CaO at 910.0 °C. Round your answer to 2 significant digits. Note for advanced students: it's possible there was some error in this experiment, and the value it suggests for K does not match the accepted value. K-0 Parrow_forwardThe temperature of your water was 22.4 degrees Celsius. The volume of hydrogen collected was 35.3 mL. The atmospheric pressure in the lab room was 29.60 inches Hg. The difference in the water level between the beaker and the burette is 20.0 cm. What was the mass of the magnesium ribbon used? Hint: 2 HCl(aq) + Mg(aq) = H2(g) + MgCl2(aq)arrow_forwardA mixture of CO2 and Kr weighs 37.6 g and exerts a pressure of 0.855 atm in its container. Since Kr is expensive, you wish to recover it from the mixture. After the CO2 is completely removed by absorption with NaOH(s), the pressure in the container is 0.293 atm. (a) How many grams of CO2 were originally present? (b) How many grams of Kr can you recover? (a) grams CO2: (b) grams Kr: 3. 8.arrow_forward
- A flask at room temperature contains equal numbers of di-nitrogen molecules and krypton atoms. (a) Which of the two gases exerts the higher partial pressure? (b) Which gas has a higher kinetic energy per molecule/atom? (c) Which gas has molecules with a higher velocity? Explain your answers.arrow_forwardWhen limestone (solid CaCO3) is heated, it decomposes into lime (solid CaO) and carbon dioxide gas. This is an extremely useful industrial process of great antiquity, because powdered lime mixed with water is the basis for mortar and concrete - the lime absorbs CO₂ from the air and turns back into hard, durable limestone. Suppose some calcium carbonate is sealed into a limekiln of volume 550. L and heated to 520.0 °C. When the amount of CaCO3 has stopped changing, it is found that 8.46 kg have disappeared. Calculate the pressure equilibrium constant K, this experiment suggests for the equilibrium between CaCO3 and CaO at 520.0 °C. Round your answer to 2 significant digits. P Note for advanced students: it's possible there was some error in this experiment, and the value it suggests for K does not match the accepted value. 0 Xarrow_forwardA mixture of CO₂ and Kr weighs 29.6 g and exerts a pressure of 0.895 atm in its container. Since Kr is expensive, you wish to recover it from the mixture. After the CO₂ is completely removed by absorption with NaOH(s), the pressure in the container is 0.295 atm. (a) How many grams of CO₂ were originally present? (b) How many grams of Kr can you recover? (a) grams CO₂: g (b) grams Kr:arrow_forward
- When limestone (solid CaCO₂) is heated, it decomposes into time (solid CaO) and carbon dioxide gas. This is an extremely useful industrial process of great antiquity, because powdered lime mixed with water is the basis for mortar and concrete - the lime absorbs CO₂ from the air and turns back into hard, durable limestone. Suppose some calcium carbonate is sealed into a limekiln of volume 500. L and heated to 520.0 °C. When the amount of CaCO, has topped changing, it is found that 7.69 kg have disappeared. Calculate the pressure equilibrium constant K, this experiment suggests for the equilibrium between CaCO, and CaO at 520.0 °C. Round your answer to 2 significant digits. Note for advanced students: it's possible there was some error in this experiment, and the value it suggests for K does not match the accepted value. Xarrow_forwardQ1 (a) 3.2 g of sulphur was produced in a reaction between 6.0 L of hydrogen sulfide gas with excess an amount of sulphur dioxide. With the aid of Table Q1 (a)(i) and Table Q1 (a)(ii), predict the temperature (in °C) of the reaction if it was conducted at 750 torr. Element Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Boron Bromine Cadmium Calcium Californium Carbon Cerium Cesium Chlorine Chromium Cobalt Copper Curiam CY с Ce Cs a Cr Co Ca Cm Dysprosium Dy Einsteinium Es Er Eu Fm F Fr Gd Ga Ge Erbium Europium Fermium Fluorine Francium Gadoliniam Gallium Germaniam Gold Hafnium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanam Lawrencium Lead Lithiam Lutetium Table Q1 (a)(i): Atomic Number and Atomic Mass of Elements Magnesium Manganese Symbol Ac Al Am Sb As Al Ba Bk Be Bi B Br Ca Hr He Ho H In I Ir Fe Kr La Lr Ph Li Lu Mg Mn Atomic number (2) 89 13 95 51 18 33 85 56 97 4 83 5 35 48 20 98 6 58 55 17 24 27 29 96 66 99 68…arrow_forwardPlease write to their unit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY