Concept explainers
BIO Dolphin Tricks A bottlenose dolphin (Tursiops truncates) is about 2.5 m long and has a mass of 250 kg It can jump 3.5 in above the surface of the water while flipping nose-to-tail at 5.6 rad/s, fast enough to complete 1.5 rotations before landing in the water. (a) How much energy must the dolphin generate to jump 3.5 m above the surface of the water? (b) If the dolphin’s moment of inertia about its rotation axis is 225 kg · m2, how much energy must the dolphin.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective
The Cosmic Perspective Fundamentals (2nd Edition)
An Introduction to Thermal Physics
Life in the Universe (4th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Physics for Scientists and Engineers with Modern Physics
- A small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.arrow_forwardHow much energy is lost to a dissipative drag force if a 60-kg person falls at a constant speed for 15 meters?arrow_forwardExplain why it is easier to climb a mountain on a zigzag path rather than one straight up the side. Is your increase in gravitational potential energy the same in both cases? Is your energy consumption the same in both?arrow_forward
- A small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P8.43). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point . (c) its speed at point B, and (d) its kinetic energy and the potential energy when the block is at point . Figure P8.43 Problems 43 and 44.arrow_forwardThe Flybar high-tech pogo stick is advertised as being capable of launching jumpers up to 6 ft. The ad says that the minimum weight of a jumper is 120 lb and the maximum weight is 250 lb. It also says that the pogo stick uses a patented system of elastometric rubber springs that provides up to 1200 lbs of thrust, something common helical spring sticks simply cannot achieve (rubber has 10 times the energy storing capability of steel). a. Use Figure P8.32 to estimate the maximum compression of the pogo sticks spring. Include the uncertainty in your estimate. b. What is the effective spring constant of the elastometric rubber springs? Comment on the claim that rubber has 10 times the energy-storing capability of steel. c. Check the ads claim that the maximum height a jumper can achieve is 6 ft.arrow_forwardTwo children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller child hops off to jump straight down into the pool, the bigger child releases herself at the top of the frictionless slide. (i) Upon reaching the water, the kinetic energy of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal. (ii) Upon reaching the water, the speed of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal. (iii) During their motions from the platform to the water, the average acceleration of the smaller child compared with that of the larger child is (a) greater (b) less (c) equal.arrow_forward
- At the start of a basketball game, a referee tosses a basketball straight into the air by giving it some initial speed. After being given that speed, the ball reaches a maximum height of 4.25 m above where it started. Using conservation of energy, find a. the balls initial speed and b. the height of the ball when it has a speed of 2.5 m/s.arrow_forwardA roller-coaster car shown in Figure P7.82 is released from rest from a height h and then moves freely with negligible friction. The roller-coaster track includes a circular loop of radius R in a vertical plane. (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop in terms of R. (b) Now assume the release point is at or above the minimum required height. Show that the normal force on the car at the bottom of the loop exceeds the normal force at the top of the loop by six times the cars weight. The normal force on each rider follows the same rule. Such a large normal force is dangerous and very uncomfortable for the riders. Roller coasters are therefore not built with circular loops in vertical planes. Figure P5.22 (page 149) shows an actual design.arrow_forwardA body moves in a circle at constant speed. Does the centripetal force that accelerates the body do any work? Explain.arrow_forward
- What average power is generated by a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forwardJane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with person-eating crocodiles to save Tarzan from danger. She must swing into a wind exerting constant horizontal force F, on a vine having length L and initially making an angle with the vertical (Fig. P7.81). Take D = 50.0 m, F = 110 N, L = 40.0 m, and = 50.0. (a) With what minimum speed must Jane begin her swing to just make it to the other side? (b) Once the rescue is complete, Tarzan and Jane must swing back across the river. With what minimum speed must they begin their swing? Assume Tarzan has a mass of 80.0 kg.arrow_forwardA 5.00-kg block is set into motion up an inclined plane with an initial speed of i = 8.00 m/s (Fig. P7.21). The block comes to rest after traveling d = 3.00 m along the plane, which is inclined at an angle of = 30.0 to the horizontal. For this motion, determine (a) the change in the blocks kinetic energy, (b) the change in the potential energy of the block-Earth system, and (c) the friction force exerted on the block (assumed to be constant), (d) What is the coefficient of kinetic friction? Figure P7.21arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning