The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s) t + (42.5rad/s 2 ) t 2 . (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s) t + (42.5rad/s 2 ) t 2 . (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s)t + (42.5rad/s2)t2. (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
Definition Definition Angle at which a point rotates around a specific axis or center in a given direction. Angular displacement is a vector quantity and has both magnitude and direction. The angle built by an object from its rest point to endpoint created by rotational motion is known as angular displacement. Angular displacement is denoted by θ, and the S.I. unit of angular displacement is radian or rad.
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.