A stunt man drives a car at a speed of 25 m/sec off a 10 -m cliff. The road leading to the edge of the cliff is inclined upward at an angle of 16 ° . Choose a coordinate system with the origin at the base of the cliff directly under the point where the car leaves the edge. a. Write parametric equations defining the path of the car. b. How long is the car in the air? Round to the nearest tenth of a second. c. How far from the base of the cliff will the car land? Round to the nearest foot.
A stunt man drives a car at a speed of 25 m/sec off a 10 -m cliff. The road leading to the edge of the cliff is inclined upward at an angle of 16 ° . Choose a coordinate system with the origin at the base of the cliff directly under the point where the car leaves the edge. a. Write parametric equations defining the path of the car. b. How long is the car in the air? Round to the nearest tenth of a second. c. How far from the base of the cliff will the car land? Round to the nearest foot.
Solution Summary: The author calculates the parametric equation that represents the path of the car if it cliff off with an initial speed of 25m/sec.
A stunt man drives a car at a speed of
25
m/sec
off a
10
-m
cliff. The road leading to the edge of the cliff is inclined upward at an angle of
16
°
. Choose a coordinate system with the origin at the base of the cliff directly under the point where the car leaves the edge.
a. Write parametric equations defining the path of the car.
b. How long is the car in the air? Round to the nearest tenth of a second.
c. How far from the base of the cliff will the car land? Round to the nearest foot.
Formula Formula A polynomial with degree 2 is called a quadratic polynomial. A quadratic equation can be simplified to the standard form: ax² + bx + c = 0 Where, a ≠ 0. A, b, c are coefficients. c is also called "constant". 'x' is the unknown quantity
Q1:
A slider in a machine moves along a fixed straight rod. Its
distance x cm along the rod is given below for various values of the time. Find the
velocity and acceleration of the slider when t = 0.3 seconds.
t(seconds)
x(cm)
0 0.1 0.2 0.3 0.4 0.5 0.6
30.13 31.62 32.87 33.64 33.95 33.81 33.24
Q2:
Using the Runge-Kutta method of fourth order, solve for y atr = 1.2,
From
dy_2xy +et
=
dx x²+xc*
Take h=0.2.
given x = 1, y = 0
Q3:Approximate the solution of the following equation
using finite difference method.
ly -(1-y=
y = x), y(1) = 2 and y(3) = −1
On the interval (1≤x≤3).(taking h=0.5).
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
RELATIONS-DOMAIN, RANGE AND CO-DOMAIN (RELATIONS AND FUNCTIONS CBSE/ ISC MATHS); Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=u4IQh46VoU4;License: Standard YouTube License, CC-BY