For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. y 2 − 8 y − 8 x + 40 = 0
For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. y 2 − 8 y − 8 x + 40 = 0
Solution Summary: The author explains the nature of the curve y2-8y-8x+40=0, which represents a parabola.
a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola.
b. Graph the curve.
c. Identify key features of the graph. That is,
If the equation represents a circle, identify the center and radius.
If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity.
If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity.
If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry.
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.