Concept explainers
The radius of tungsten is 137 pm and the density is 19.3 g/cm3. Does elemental tungsten have a face-centered cubic structure or a body-centered cubic structure?
Interpretation:
The lattice structure of elemental tungsten has to be identified and justified.
Concept introduction:
In packing of atoms in a crystal structure, the atoms are imagined as spheres. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing.
In body-centered cubic unit cell, each of the six corners is occupied by every single atom. Center of the cube is occupied by one atom.
Each atom in the corner is shared by eight unit cells and a single atom in the center of the cube remains unshared. Thus the number of atoms per unit cell in BCC unit cell is,
In face-centered cubic unit cell, each of the six corners is occupied by every single atom. Each face of the cube is occupied by one atom.
Each atom in the corner is shared by eight unit cells and each atom in the face is shared by two unit cells. Thus the number of atoms per unit cell in FCC unit cell is,
Answer to Problem 62E
Answer
The lattice structure of elemental tungsten is identified as cubic close packing with body-centered cubic unit cell.
Explanation of Solution
Explanation
Calculate the density of tungsten by assuming its structure as FCC.
The atomic radius of tungsten is given. The unit cell is assumed as that of face-centered cubic and its edge length is calculated. Accordingly, the volume, mass and density of FCC unit cell are calculated. The obtained value does not agree with the actual value of density of tungsten.
Calculate the density of tungsten by assuming its structure as BCC.
The atomic radius of tungsten is given. The unit cell is assumed as that of body-centered cubic and its edge length is calculated. Accordingly, the volume, mass and density of BCC unit cell are calculated. The obtained value agrees well with the actual value of density of tungsten.
Conclusion
The lattice structure of elemental tungsten is identified that of body-centered cubic since the density obtained by assuming the same agrees well with the actual value of density of tungsten.
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Chemistry, Loose-leaf Version, 10th + Enhanced Webassign Printed Access Card For Chemistry, Multi-term Courses
- What is the pH of the Tris buffer after the addition of 10 mL of 0.01M NaOH? How would I calculate this?arrow_forwardWhy do isopolianions form polymeric species with a defined molecular weight? What does it depend on?arrow_forwardWhat are isopolianions? Describe the structural unit of isopolianions.arrow_forward
- Justify the polymerization of vanadates VO43-, as a function of concentration and pH.arrow_forwardWhat is the preparation of 500 mL of 100mM MOPS buffer (pH=7.5) starting with 1 M MOPS and 1 M NaOH? How would I calculate the math?arrow_forwardIndicate the correct option.a) Isopolianions are formed around metallic atoms in a low oxidation state.b) Non-metals such as N, S, C, Cl, ... give rise to polyacids (oxygenated).c) Both are incorrect.arrow_forward
- 14. Which one of the compounds below is the major organic product obtained from the following series of reactions? Br OH OH CH3O™ Na+ H*, H₂O SN2 HO OH A B C D 0 Earrow_forwardWavelength (nm) I'm not sure what equation I can come up with other than the one generated with my graph. Can you please show me the calculations that were used to find this equation? Give an equation that relates energy to wavelength. Explain how you arrived at your equation. Wavelength Energy (kJ/mol) (nm) 350 341.8 420 284.8 470 254.5 530 225.7 580 206.3 620 192.9 700 170.9 750 159.5 Energy vs. Wavelength (Graph 1) 400 350 y=-0.4367x+470.82 300 250 200 150 100 50 O 0 100 200 300 400 500 600 700 800 Energy (kJ/mol)arrow_forward5. Draw molecular orbital diagrams for superoxide (O2¯), and peroxide (O2²-). A good starting point would be MO diagram for O2 given in your textbook. Then: a) calculate bond orders in superoxide and in peroxide; indicate which species would have a stronger oxygen-oxygen bond; b) indicate which species would be a radical. (4 points)arrow_forward
- 16. Which one of the compunds below is the final product of the reaction sequence shown here? عملاء .OH Br. (CH3)2CH-C=C H+,H,O 2 mol H2, Pt A OH B OH D OH E OH C OHarrow_forwardIndicate whether any of the two options is correct.a) The most common coordination structure for isopolianions is the prismb) Heteropolianions incorporate alkaline cations into their structuresarrow_forwardPlease correct answer and don't use hand ratingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning