EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
4th Edition
ISBN: 9780135272947
Author: Wolfson
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 59P
A potter’s wheel is a stone disk 90 cm in diameter with mass 120 kg. If the potter’s foot pushes at the outer edge of the initially stationary wheel with a 75-N force for one-eighth of a revolution, what will be the final speed?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
While spinning down from 500.0 rpm to rest, a solid uniform disk does 51 KJ of
work. If the radius of the disk is r=400mm what is it's mass?.
A 26 g block sits at the center of a turntable that rotates at 50 rpm. A compressed spring shoots the block radially outward from the center along a frictionless groove in the surface of the turntable. Calculate the turntable's angular speed when the block reaches the outer edge. Treat the turntable as a solid disk with mass with mass 200 g and diameter 30.0 cm. Express your answer in revolutions per minute.
A thin, 90.0 g disk with a diameter of 6.00 cm rotates about an axis through its center with 0.240 J of kinetic energy. What is the speed of a point on the rim?
Chapter 10 Solutions
EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
Ch. 10.1 - A wheel undergoes constant angular acceleration,...Ch. 10.2 - The forces in Figs. 10.5 and 10.6 all have the...Ch. 10.3 - Would the rotational inertia of the two-mass...Ch. 10.3 - Explain why the rotational inertia of the solid...Ch. 10.3 - The figure shows two identical masses m connected...Ch. 10.4 - A wheel is rotating at 100 rpm. To spin it up to...Ch. 10.5 - The wheels of trains, subway cars, and other rail...Ch. 10 - Do all points on a rigid, rotating object have the...Ch. 10 - A point on the rim of a rotating wheel has nonzero...Ch. 10 - Two forces act on an object, but the net force is...
Ch. 10 - Is it possible to apply a counterclockwise torque...Ch. 10 - A solid sphere and a hollow sphere of the same...Ch. 10 - A solid cylinder and a hollow cylinder of the same...Ch. 10 - A circular saw lakes a long time to stop rotating...Ch. 10 - The lower part of a horses leg contains...Ch. 10 - Given a fixed amount of a material, what shape...Ch. 10 - A ball starts from rest and rolls without slipping...Ch. 10 - Exercises and Problems Exercises Section 10.1...Ch. 10 - Whats the linear speed of a point (a) on Earths...Ch. 10 -
Express each of the following in radium per...Ch. 10 - A 25-cm-diameter circular saw blade spins at 3500...Ch. 10 - A compact discs rotation varies from about 200 rpm...Ch. 10 - During startup, a power plants turbine accelerates...Ch. 10 - A merry-go-round starts front rest and accelerates...Ch. 10 - Section 10.2 Torque A 320-N frictional force acts...Ch. 10 - Prob. 19ECh. 10 - A car tune-up manual calls for tightening the...Ch. 10 - A 55-g mouse runs out to the end of the 17-cm-long...Ch. 10 - You have your bicycle upside down for repairs. The...Ch. 10 - Section 10.3 Rotational Inertia and the Analog of...Ch. 10 - The shaft connecting a power plants turbine and...Ch. 10 - The chamber of a rock-tumbling machine is a hollow...Ch. 10 - A wheels diameter is 92 cm, and its rotational...Ch. 10 - (a) Estimate Earths rotational inertia, assuming...Ch. 10 - A 108-g Frisbee is 24 cm in diameter and has half...Ch. 10 - At the MIT Magnet Laboratory, energy is stored in...Ch. 10 - Section 10.4 Rotational Energy A 25-cm-diameter...Ch. 10 - Humankind uses energy at the rate of about 16 TW....Ch. 10 - A 150-g baseball is pitched at 33 m/s spinning at...Ch. 10 - (a) Find the energy stored in the flywheel of...Ch. 10 - A solid 2.4-kg sphere is rolling at 5.0 m/s. Find...Ch. 10 - What fraction of a solid disks kinetic energy is...Ch. 10 - A rolling ball has total kinetic energy 100 J, 40...Ch. 10 - Prob. 37ECh. 10 - Example 10.5: The rotational inertia of a thin rod...Ch. 10 - Prob. 39ECh. 10 - Prob. 40ECh. 10 - Prob. 41ECh. 10 - Prob. 42ECh. 10 - Example 10.12: A 29.5-kg wheel with radius 40.6 cm...Ch. 10 - Prob. 44ECh. 10 - A wheel turns through 2.0 revolutions while...Ch. 10 - Youre an engineer designing kitchen appliances,...Ch. 10 - You rev your cars engine and watch the tachometer...Ch. 10 - A circular saw spins at 5800 rpm, and its...Ch. 10 - Full-circle rotation is common in mechanical...Ch. 10 - A square frame is made from four thin rods, each...Ch. 10 - A thick ring has inner radius 12R, outer radius R,...Ch. 10 - A uniform rectangular flat plate has mass M and...Ch. 10 - The cellular motor driving the flagellum in E....Ch. 10 - Verify by direct integration Table 10.2s entry for...Ch. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - A 2.4-kg block rests on a slope and is attached by...Ch. 10 - Youve got your bicycle upside down for repairs,...Ch. 10 - A potters wheel is a stone disk 90 cm in diameter...Ch. 10 - A ships anchor weighs 5.0kN. Its cable passes over...Ch. 10 - Starting from rest, a hollow ball rolls down a...Ch. 10 - A hollow ball rolls along a horizontal surface at...Ch. 10 - As an automotive engineer, youre charged with...Ch. 10 - A solid ball of mass M and radius R starts at rest...Ch. 10 - A disk of radius R has an initial mass M. Then a...Ch. 10 - A 50-kg mass is tied to a massless rope wrapped...Ch. 10 - Each wheel of a 320-kg motorcycle is 52 cm in...Ch. 10 - A solid marble starts from rest and rolls without...Ch. 10 - A disk of radius R and thickness w has a mass...Ch. 10 - The disk in Fig. 10.29 is rotating freely about a...Ch. 10 - Prob. 71PCh. 10 - A lighter car requires less power for a given...Ch. 10 - Calculate the rotational inertia of a solid,...Ch. 10 - A thick ring of mass M has inner radius R1 and...Ch. 10 - Prob. 75PCh. 10 - The local historical society has asked your...Ch. 10 - Youre skeptical about a new hybrid car that stores...Ch. 10 - Figure 10.31 shows an object of mass M with one...Ch. 10 - Figure 10.32 shows an apparatus used to measure...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...Ch. 10 - Centrifuges are widely used in biology and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The accompanying chromosome diagram represents a eukaryotic chromosome prepared with Giemsa stain. Indicate the...
Genetic Analysis: An Integrated Approach (3rd Edition)
What type of unconformity separates layer G from layer F?
Applications and Investigations in Earth Science (9th Edition)
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A space probe is fired as a projectile from the Earths surface with an initial speed of 2.00 104 m/s. What will its speed be when it is very far from the Earth? Ignore atmospheric friction and the rotation of the Earth. P11.26 Ki+Ui=Kf+Uf12mvi2+GMEm(1rf1ri)=12mvf212vi2+GME(01RE)=12vf2orvf2=v122GMEREandvf=(v122GMERE)1/2,vf=[(2.00104)21.25108]1/2m/s=1.66104m/sarrow_forwardTo develop muscle tone, a woman lifts a 2.00-kg weight held in her hand. She uses her biceps muscle to flex the lower arm through an angle of 60.0°. (a) What is the angular acceleration if the weight is 24.0 cm from the elbow joint, her forearm has a moment of inertia of 0.250kg-m2 and the net force she exerts is 750 N at an effective perpendicular lever arm of 2.00 cm? (b) How much work does she do?arrow_forwardAn athlete in a gym applies a constant force of 50 N to the pedals of a bicycle to keep the rotation rate of the wheel at 10 rev/s. The length of the pedal arms is 30 cm. What is the power delivered to the bicycle by the athlete?arrow_forward
- The puck in Figure P11.46 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) Figure P11.46arrow_forwardThe puck in the figure below has a mass of 0.260 kg. Its original distance from the center of rotation is 40.0 cm, and it moves with a speed of 90.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Hint: Consider the change of kinetic energy of the puck.)arrow_forwardThe puck in the figure below has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 32.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 12.5 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) 0 R m × Your response is off by a multiple of ten. Jarrow_forward
- Two masses, m1 =15 kg, m2 = 3kg in Atwood's machine are connected over the frictionless pulley that is a uniform disk with a radius of 12cm. The mass of the pulley is 0.2 kg. Use conservation of energy to solve for the final speed of block m1 and m2, when the block m2 moves down a distance of 1.2 m.arrow_forwardAs a solid disk rolls over the top of a hill on a track, its speed is 60 cm/s. If friction losses are negligible, how fast is the disk moving when it is 12 cm below the top?arrow_forwardA wrench is used to tighten a nut. A 100-N force is applied 0.10 m from the axis of rotation. what is the work done to turn the nut through 1.5 radians ?arrow_forward
- The puck in the figure below has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 32.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 12.5 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) J 1x 0 R marrow_forwardA disc of moment of inertia 9.8/pi2 kg m2 is rotating at 600 rpm. If the frequency of rotation changes from 600 rpm to 300 rpm, then what is the work done ?arrow_forwardTwo hangers are attached by a string to a vertically mounted pulley system as shown. One disk is bigger than the other, and the disks are attached to each other such that they rotate together. The axle has negligible friction. The mass of the large disk is 1200 grams and the radius is 11 cm. The mass of the small disk is 400 grams and the radius is 4 cm. The high hanger has a mass of 200 grams and starts 80 cm above the ground. The lower mass starts on the ground and has a mass of 100 grams. The hangers are released from rest. What is the velocity of the 200 gram hanger when it hits the floor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY