Concept explainers
Consider the following steady, two-dimensional, incompressible velocity field:
Answers: Yes,
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
- 1. Stagnation Points A steady incompressible three dimensional velocity field is given by: V = (2 – 3x + x²) î + (y² – 8y + 5)j + (5z² + 20z + 32)k Where the x-, y- and z- coordinates are in [m] and the magnitude of velocity is in [m/s]. a) Determine coordinates of possible stagnation points in the flow. b) Specify a region in the velocity flied containing at least one stagnation point. c) Find the magnitude and direction of the local velocity field at 4- different points that located at equal- distance from your specified stagnation point.arrow_forwardPlease answer botharrow_forwardThe flow field about a rotating cylinder with the radius a can be modelled by superimposing the velocity potentials of a uniform flow filed, a doublet and a potential vortex: p = Ux[1+ (a/r)²] – (TO)/(2x) Does this velocity potential satisfy the Laplace equation? True Falsearrow_forward
- The velocity components of a flow field are given by: = 2x² – xy + z², v = x² – 4xy + y², w = 2xy – yz + y² (i) Prove that it is a case of possible steady incompressible fluid flow (ii) Calculate the velocity and acceleration at the point (2,1,3)arrow_forward4. A steady, incompressible, and two-dimensional velocity field is given by the following components in the xy-plane: Vxu = 2.65 + 3.12x + 5.46y = Vy= =v=0.8+ 5.89x² + 1.48y = Calculate the acceleration field (find expressions for acceleration components ax and ay and calculate the acceleration at the point (x,y) = (-1,3).arrow_forward2. Consider the two-dimensional time-dependent velocity field u(x, t) = (sint, cost, 0), in the basis of Cartesian coordinates. a) Determine the streamlines passing through the point x = 0 at the times t = 0, π/2, π and 3π/2. b) Determine the paths of fluid particles passing through the point x = 0 at the same times, to = 0, π/2, 7 and 37/2. Hence, describe their motion. ㅠ c) Find the streakline produced by tracer particles continuously released at the point xo = 0 and find its position at t = 0, π/2, π and 37/2. Hence describe its motion.arrow_forward
- a. Given the velocity field u=(u,v,w) in Cartesian coordinates with u=2x+y, v=2zt, w=0. i. Find the equations of the corresponding streamlines (Eulerian concept) ii. Find the equations of the corresponding particle paths, i.e., the pathlines (Lagrangian concept). b. Show that the Vu=0 everywhere implies that volumes are conserved, i.e., the volume of red particles at t-0 is the same as at t=t. Hint: Write out what you must prove and use the theorems to get there.arrow_forwardTwo velocity components of a steady, incompressible flow field are known: u = 2ax + bxy + cy2 and ? = axz − byz2, where a, b, and c are constants. Velocity component w is missing. Generate an expression for w as a function of x, y, and z.arrow_forwardQuestion 3 (a) A two-dimensional flow velocity field in the domain with non-dimensional coordinates x > 0 and y > 0 is defined as: v = -Upxy i+ Upxy j where i and j are the unit vectors in the x- and y-directions respectively and Uo is a constant with units m/s. (i) Determine the magnitude and direction of the velocity at the point (1,1). (ii) Find the equation of the streamlines.arrow_forward
- Please answer with detailarrow_forward1. Find the stream function for a parallel flow of uniform velocity V0 making an angle α with the x-axis. 2. A certain flow field is described by the stream function ψ = xy. (a) Sketch the flow field. (b) Find the x and y velocity components at [0, 0], [1, 1], [∞, 0], and [4, 1]. (c) Find the volume flow rate per unit width flowing between the streamlines passing through points [0, 0] and [1, 1], and points [1, 2] and [5, 3].arrow_forward4. Consider the steady, two-dimensional velocity field given by: u = 2xy-y²; v=x-y². Show that it is a possible 2d incompressible flow. Find the component of acceleration in x direction of a fluid particle at point (x, y) = (1,2)arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY