Concept explainers
In this chapter, we discuss the line vortex (Fig. 10-109) as an example of an irrotational flow field. The velocity components are
FIGURE P10-109
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
FLUID MECHANICS FUND. (LL)-W/ACCESS
- V u-v Question 4: Consider fully developed Couette flow - flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary as illustrated. The flow is steady, incompressible, and two dimensional in the xy-plane. The velocity field is given by V = (u,v) = (V y/h)ỉ + 0ỷ, Generate an expression for stream function Yalong the vertical dashed line in the figure. For convenience, 4= 0 along the bottom wall of the channel. What is the value of Y along the top wall?arrow_forwardThe velocity field for a line vortex in the r?-plane is given byur = 0 u? = K / rwhere K is the line vortex strength. For the case with K = 1.5 m/s2, plot a contour plot of velocity magnitude (speed). Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure to label these speeds on your plot.arrow_forwardIn a steady, two-dimensional flow field in the xyplane, the x-component of velocity is u = ax + by + cx2 where a, b, and c are constants with appropriate dimensions. Generate a general expression for velocity component ? such that the flow field is incompressible.arrow_forward
- Show the step by step solution and explanation on how we arrive in the answerarrow_forwardCan you solve the questionarrow_forwardA 2-D flow field has velocity components along X-axis and y-axis given by u = x't and v = -2 xyt respectively, here, t is time. The equation of streamline for the given velocity field is : (а) ху — сonstant (с) ху' — сonstant (b) x´y = constant (d) x + y constantarrow_forward
- provide explanation and free body diagram for each part also commentarrow_forwardPlease answer botharrow_forwardWrite down the continuity equation and the Navier-Stokes equations in the x-, y-, and z-directions for an incompressible, three-dimensional flow. There should be a total of fourequations. If we make the assumptions that the flow is steady and inviscid, what do thesefour equations simplify to? Note: this is notvan assignment question and not a grade questionarrow_forward
- Consider irrotational flow past a stationary sphere of radius R located at the origin. In the limit r→∞, the velocity field v = U2, as in Fig. 8-6 in the book. (a) Calculate the velocity field v assuming potential flow given by v = Vo(r, 0, 0), where the potential can be assumed to be independent of the azimuthal coordinate and vo= 0. Here, since ə rde Ə Ər for large r/R, look for solutions of the form = f(r) cos 0. Assume a no-penetration boundary condition at the surface of the sphere. (b) Calculate the pressure P and the drag force due to pressure. Vr = U cos 0 and Vo = -U sin 0arrow_forwardConsider fully developed Couette flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary, as illustrated in the figure below. The flow is steady, incompressible, and two-dimensional in the XY plane. The velocity field is given by V }i = (u, v) = (v² )i +0j = V (a) Find out the acceleration field of this flow. (b) Is this flow steady? What are the u and v components of velocity? u= V² harrow_forwardConsider the following steady, two-dimensional, incompressible velocity field: V-› = (u, ? ) = ( 1/2ay2 + b) i-› + (axy2 + c) j-›. Is this flow field irrotational? If so, generate an expression for the velocity potential function.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY