EBK PRACTICAL MANAGEMENT SCIENCE
5th Edition
ISBN: 9780100655065
Author: ALBRIGHT
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 55P
Summary Introduction
To provide: A correlation matrix that is invalid and explain why it is invalid.
Simulation modeling:
A simulation model is a computerized model that depicts or imitates a real-life situation. It is like other mathematical models except that it incorporates the concept of uncertainty in one or more number of the input variables.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A recent 10-year study conducted by a research team at the Great Falls Medical School was conducted to assess how age, systolic blood pressure, and smoking relate to the risk of strokes. Assume that the following data are from a portion of this study. Risk is interpreted as the probability (times 100) that the patient will have a stroke over the next 10-year period. For the smoking variable, define a dummy variable with 1 indicating a smoker and 0 indicating a nonsmoker. The data is provided below:
Risk of Strokes
Age
Systolic Blood Pressure
Smoker
10
59
156
0
25
65
163
0
12
60
158
0
57
86
177
1
28
59
196
0
50
76
189
1
17
57
159
1
34
78
120
1
37
80
135
1
15
78
98
0
22
71
152
1
39
70
173
1
17
67
135
0
48
77
209
1
18
60
199
0
36
82
119
1
10
66
166
0
34
80
125
1
4
62
117
0
38
59…
New York City is the most expensive city in the United States for lodging. The mean hotel room rate is $204
per night (USA Today, April 30, 2012). Assume that room rates are normally distributed with a standard
deviation of $55. Use Table 1 in Appendix B.
a. What is the probability that a hotel room costs $225 or more per night (to 4 decimals)?
b. What is the probability that a hotel room costs less than $140 per night (to 4 decimals)?
c. What is the probability that a hotel room costs between $200 and $300 per night (to 4 decimals)?
d. What is the cost of the 20% most expensive hotel rooms in New York City? Round up to the next dollar.
or
- Select your answer - ♥
Which of the following interpretations is correct about risk versus uncertainty?
Risk is about the known future while uncertainty is about the unknown future
Tossing a coin is an example of uncertainty while pandemic is an example of risk
Risk is about the unknown unknowns while uncertainty is about the known unknowns
Risk is about random variables with estimable chances and possible outcomes while uncertainty is about variables with unknown chances and/or unknown possible outcomes
Chapter 10 Solutions
EBK PRACTICAL MANAGEMENT SCIENCE
Ch. 10.2 - Use the RAND function and the Copy command to...Ch. 10.2 - Use Excels functions (not @RISK) to generate 1000...Ch. 10.2 - Use @RISK to draw a uniform distribution from 400...Ch. 10.2 - Use @RISK to draw a normal distribution with mean...Ch. 10.2 - Use @RISK to draw a triangular distribution with...Ch. 10.2 - Use @RISK to draw a binomial distribution that...Ch. 10.2 - Use @RISK to draw a triangular distribution with...Ch. 10.2 - We all hate to keep track of small change. By...Ch. 10.4 - Prob. 11PCh. 10.4 - In August of the current year, a car dealer is...
Ch. 10.4 - Prob. 13PCh. 10.4 - Prob. 14PCh. 10.4 - Prob. 15PCh. 10.5 - If you add several normally distributed random...Ch. 10.5 - In Problem 11 from the previous section, we stated...Ch. 10.5 - Continuing the previous problem, assume, as in...Ch. 10.5 - In Problem 12 of the previous section, suppose...Ch. 10.5 - Use @RISK to analyze the sweatshirt situation in...Ch. 10.5 - Although the normal distribution is a reasonable...Ch. 10.6 - When you use @RISKs correlation feature to...Ch. 10.6 - Prob. 24PCh. 10.6 - Prob. 25PCh. 10.6 - Prob. 28PCh. 10 - Six months before its annual convention, the...Ch. 10 - Prob. 30PCh. 10 - A new edition of a very popular textbook will be...Ch. 10 - Prob. 32PCh. 10 - W. L. Brown, a direct marketer of womens clothing,...Ch. 10 - Prob. 34PCh. 10 - Lemingtons is trying to determine how many Jean...Ch. 10 - Dilberts Department Store is trying to determine...Ch. 10 - It is surprising (but true) that if 23 people are...Ch. 10 - Prob. 40PCh. 10 - At the beginning of each week, a machine is in one...Ch. 10 - Simulation can be used to illustrate a number of...Ch. 10 - Prob. 43PCh. 10 - Prob. 46PCh. 10 - If you want to replicate the results of a...Ch. 10 - Suppose you simulate a gambling situation where...Ch. 10 - Prob. 49PCh. 10 - Big Hit Video must determine how many copies of a...Ch. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Why is the RISKCORRMAT function necessary? How...Ch. 10 - Consider the claim that normally distributed...Ch. 10 - Prob. 55PCh. 10 - When you use a RISKSIMTABLE function for a...Ch. 10 - Consider a situation where there is a cost that is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- A martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forwardBased on Marcus (1990). The Balboa mutual fund has beaten the Standard and Poors 500 during 11 of the last 13 years. People use this as an argument that you can beat the market. Here is another way to look at it that shows that Balboas beating the market 11 out of 13 times is not unusual. Consider 50 mutual funds, each of which has a 50% chance of beating the market during a given year. Use simulation to estimate the probability that over a 13-year period the best of the 50 mutual funds will beat the market for at least 11 out of 13 years. This probability turns out to exceed 40%, which means that the best mutual fund beating the market 11 out of 13 years is not an unusual occurrence after all.arrow_forwardBased on Babich (1992). Suppose that each week each of 300 families buys a gallon of orange juice from company A, B, or C. Let pA denote the probability that a gallon produced by company A is of unsatisfactory quality, and define pB and pC similarly for companies B and C. If the last gallon of juice purchased by a family is satisfactory, the next week they will purchase a gallon of juice from the same company. If the last gallon of juice purchased by a family is not satisfactory, the family will purchase a gallon from a competitor. Consider a week in which A families have purchased juice A, B families have purchased juice B, and C families have purchased juice C. Assume that families that switch brands during a period are allocated to the remaining brands in a manner that is proportional to the current market shares of the other brands. For example, if a customer switches from brand A, there is probability B/(B + C) that he will switch to brand B and probability C/(B + C) that he will switch to brand C. Suppose that the market is currently divided equally: 10,000 families for each of the three brands. a. After a year, what will the market share for each firm be? Assume pA = 0.10, pB = 0.15, and pC = 0.20. (Hint: You will need to use the RISKBINOMLAL function to see how many people switch from A and then use the RISKBENOMIAL function again to see how many switch from A to B and from A to C. However, if your model requires more RISKBINOMIAL functions than the number allowed in the academic version of @RISK, remember that you can instead use the BENOM.INV (or the old CRITBENOM) function to generate binomially distributed random numbers. This takes the form =BINOM.INV (ntrials, psuccess, RAND()).) b. Suppose a 1% increase in market share is worth 10,000 per week to company A. Company A believes that for a cost of 1 million per year it can cut the percentage of unsatisfactory juice cartons in half. Is this worthwhile? (Use the same values of pA, pB, and pC as in part a.)arrow_forward
- Play Things is developing a new Lady Gaga doll. The company has made the following assumptions: The doll will sell for a random number of years from 1 to 10. Each of these 10 possibilities is equally likely. At the beginning of year 1, the potential market for the doll is two million. The potential market grows by an average of 4% per year. The company is 95% sure that the growth in the potential market during any year will be between 2.5% and 5.5%. It uses a normal distribution to model this. The company believes its share of the potential market during year 1 will be at worst 30%, most likely 50%, and at best 60%. It uses a triangular distribution to model this. The variable cost of producing a doll during year 1 has a triangular distribution with parameters 15, 17, and 20. The current selling price is 45. Each year, the variable cost of producing the doll will increase by an amount that is triangularly distributed with parameters 2.5%, 3%, and 3.5%. You can assume that once this change is generated, it will be the same for each year. You can also assume that the company will change its selling price by the same percentage each year. The fixed cost of developing the doll (which is incurred right away, at time 0) has a triangular distribution with parameters 5 million, 7.5 million, and 12 million. Right now there is one competitor in the market. During each year that begins with four or fewer competitors, there is a 25% chance that a new competitor will enter the market. Year t sales (for t 1) are determined as follows. Suppose that at the end of year t 1, n competitors are present (including Play Things). Then during year t, a fraction 0.9 0.1n of the company's loyal customers (last year's purchasers) will buy a doll from Play Things this year, and a fraction 0.2 0.04n of customers currently in the market ho did not purchase a doll last year will purchase a doll from Play Things this year. Adding these two provides the mean sales for this year. Then the actual sales this year is normally distributed with this mean and standard deviation equal to 7.5% of the mean. a. Use @RISK to estimate the expected NPV of this project. b. Use the percentiles in @ RISKs output to find an interval such that you are 95% certain that the companys actual NPV will be within this interval.arrow_forwardSoftware development is an inherently risky and uncertain process. For example, there are many examples of software that couldnt be finished by the scheduled release datebugs still remained and features werent ready. (Many people believe this was the case with Office 2007.) How might you simulate the development of a software product? What random inputs would be required? Which outputs would be of interest? Which measures of the probability distributions of these outputs would be most important?arrow_forwardAssume a very good NBA team has a 70% chance of winning in each game it plays. During an 82-game season what is the average length of the teams longest winning streak? What is the probability that the team has a winning streak of at least 16 games? Use simulation to answer these questions, where each iteration of the simulation generates the outcomes of all 82 games.arrow_forward
- A new edition of a very popular textbook will be published a year from now. The publisher currently has 1000 copies on hand and is deciding whether to do another printing before the new edition comes out. The publisher estimates that demand for the book during the next year is governed by the probability distribution in the file P10_31.xlsx. A production run incurs a fixed cost of 15,000 plus a variable cost of 20 per book printed. Books are sold for 190 per book. Any demand that cannot be met incurs a penalty cost of 30 per book, due to loss of goodwill. Up to 1000 of any leftover books can be sold to Barnes and Noble for 45 per book. The publisher is interested in maximizing expected profit. The following print-run sizes are under consideration: 0 (no production run) to 16,000 in increments of 2000. What decision would you recommend? Use simulation with 1000 replications. For your optimal decision, the publisher can be 90% certain that the actual profit associated with remaining sales of the current edition will be between what two values?arrow_forwardYou have 5 and your opponent has 10. You flip a fair coin and if heads comes up, your opponent pays you 1. If tails comes up, you pay your opponent 1. The game is finished when one player has all the money or after 100 tosses, whichever comes first. Use simulation to estimate the probability that you end up with all the money and the probability that neither of you goes broke in 100 tosses.arrow_forwardIf you own a stock, buying a put option on the stock will greatly reduce your risk. This is the idea behind portfolio insurance. To illustrate, consider a stock that currently sells for 56 and has an annual volatility of 30%. Assume the risk-free rate is 8%, and you estimate that the stocks annual growth rate is 12%. a. Suppose you own 100 shares of this stock. Use simulation to estimate the probability distribution of the percentage return earned on this stock during a one-year period. b. Now suppose you also buy a put option (for 238) on the stock. The option has an exercise price of 50 and an exercise date one year from now. Use simulation to estimate the probability distribution of the percentage return on your portfolio over a one-year period. Can you see why this strategy is called a portfolio insurance strategy? c. Use simulation to show that the put option should, indeed, sell for about 238.arrow_forward
- Dilberts Department Store is trying to determine how many Hanson T-shirts to order. Currently the shirts are sold for 21, but at later dates the shirts will be offered at a 10% discount, then a 20% discount, then a 40% discount, then a 50% discount, and finally a 60% discount. Demand at the full price of 21 is believed to be normally distributed with mean 1800 and standard deviation 360. Demand at various discounts is assumed to be a multiple of full-price demand. These multiples, for discounts of 10%, 20%, 40%, 50%, and 60% are, respectively, 0.4, 0.7, 1.1, 2, and 50. For example, if full-price demand is 2500, then at a 10% discount customers would be willing to buy 1000 T-shirts. The unit cost of purchasing T-shirts depends on the number of T-shirts ordered, as shown in the file P10_36.xlsx. Use simulation to determine how many T-shirts the company should order. Model the problem so that the company first orders some quantity of T-shirts, then discounts deeper and deeper, as necessary, to sell all of the shirts.arrow_forwardBig Hit Video must determine how many copies of a new video to purchase. Assume that the companys goal is to purchase a number of copies that maximizes its expected profit from the video during the next year. Describe how you would use simulation to shed light on this problem. Assume that each time a video is rented, it is rented for one day.arrow_forwardW. L. Brown, a direct marketer of womens clothing, must determine how many telephone operators to schedule during each part of the day. W. L. Brown estimates that the number of phone calls received each hour of a typical eight-hour shift can be described by the probability distribution in the file P10_33.xlsx. Each operator can handle 15 calls per hour and costs the company 20 per hour. Each phone call that is not handled is assumed to cost the company 6 in lost profit. Considering the options of employing 6, 8, 10, 12, 14, or 16 operators, use simulation to determine the number of operators that minimizes the expected hourly cost (labor costs plus lost profits).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License