From the given set of conditions the best condition that the given Cl 2 gas will deviate least from its ideal gas behavior should be determined. Concept introduction: Ideal gas Equation: Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation. V ∝ nT P V = R nT P PV = nRT where, n = molesofgas P = pressure T = temperature R = gas constant Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases. Boyle’s Law: At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume. Charles’s Law: At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature. Avogadro’s Hypothesis: Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
From the given set of conditions the best condition that the given Cl 2 gas will deviate least from its ideal gas behavior should be determined. Concept introduction: Ideal gas Equation: Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation. V ∝ nT P V = R nT P PV = nRT where, n = molesofgas P = pressure T = temperature R = gas constant Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases. Boyle’s Law: At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume. Charles’s Law: At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature. Avogadro’s Hypothesis: Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
Interpretation: From the given set of conditions the best condition that the given Cl2 gas will deviate least from its ideal gas behavior should be determined.
Concept introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
V ∝nTPV = RnTPPV = nRTwhere,n = molesofgasP = pressureT = temperatureR = gas constant
Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases.
Boyle’s Law:
At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.
Charles’s Law:
At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.
Avogadro’s Hypothesis:
Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell