Concept explainers
You have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find out which, you have decided to measure its molar mass.
- (a) First, yon determine that the density of the gas is 5.60 g/L at a pressure of 0.971 atm and a temperature of 18.2 °C. Calculate the molar mass and identify the compound.
- (b) To check the results from part (a), you decide to measure the molar mass based on the relative rales of effusion of the unknown gas and CO2. You find that CO2 effuses at a rate of 0.050 mol/min, whereas the unknown phosphorus fluoride effuses at a rate of 0.028 mol/min. Calculate the molar mass of the unknown gas based on these results.
(a)
Interpretation:
From the given set of gases the gas that matches with the molar mass obtained from the calculation using given set of conditions should be determined.
Concept introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases.
Boyle’s Law:
At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.
Charles’s Law:
At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.
Avogadro’s Hypothesis:
Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
The root mean square velocity
Root mean square velocity can be determined,
Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.
Average Kinetic energy: The kinetic energy for the gas is directly proportional to the kelvin temperature. The kinetic energy is equal to half of the multiplied value obtained by multiplication of mass of gas with
Answer to Problem 105IL
The molar mass for the gas is found to be
Explanation of Solution
Given:
Using ideal gas equation the molar mass for the unknown gas is determined as follows,
From the above calculation it is clear that the molar mass for the given unknown gas is found to be
Therefore, the unknown gas is found to
(b)
Interpretation:
From the given set of gases the gas that matches with the molar mass obtained from the calculation using given set of conditions should be determined.
Concept introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases.
Boyle’s Law:
At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.
Charles’s Law:
At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.
Avogadro’s Hypothesis:
Two equal volumes of gases with same temperature and pressure conditions tend to have same number of molecules with it.
The root mean square velocity
Root mean square velocity can be determined,
Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.
Average Kinetic energy: The kinetic energy for the gas is directly proportional to the kelvin temperature. The kinetic energy is equal to half of the multiplied value obtained by multiplication of mass of gas with
Answer to Problem 105IL
The molar mass for the given gas is
Explanation of Solution
Using the effusion rate of the unknown gas compared with the known
The above calculation shows that the molar mass for unknown gas is found to be
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry & Chemical Reactivity, Hybrid Edition (with OWLv2 24-Months Printed Access Card)
Additional Science Textbook Solutions
Biological Science (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry
Campbell Biology: Concepts & Connections (9th Edition)
Biology: Life on Earth with Physiology (11th Edition)
- 47 HCl(g) reacts with ammonia gas, NH3(g), to form solid ammonium chloride. If a sample of ammonia occupying 250 mL at 21 C and a pressure of 140 torr is allowed to react with excess HCl, what mass of NH4Cl will form?arrow_forwardA mixture contained zinc sulfide, ZnS, and lead sulfide, PbS. A sample of the mixture weighing 6.12 g was reacted with an excess of hydrochloric acid. The reactions are ZnS(s)+2HCL(aq)ZnCl2(aq)+H2S(g)PbS(s)+2HCL(aq)PbCl2(aq)+H2S(g) If the sample reacted completely and produced 1.049 L of hydrogen sulfide, H2S, at 23C and 762 mmHg, what were the percentages of ZnS and PbS in the mixture?arrow_forwardperform stoichiometric ca1cu1uions for reactions involving gases as reactants or products.arrow_forward
- 54 One way to generate oxygen is to heat potassium chlorate, KClO3. (The other product is potassium chloride.) If 386 mL of oxygen at 41 C and 97.8 kPa is generated by this reaction, what is the minimum mass of KClO3used?arrow_forwardWhat volume, in milliliters, of hydrogen gas at 1.33 atm and 33 C is produced by the reaction of 0.0223 g lithium metal with excess water? The other product is LiOH.arrow_forwardMany nitrate salts can be decomposed by heating. For example, blue, anhydrous copper(II) nitrate produces the gases nitrogen dioxide and oxygen when heated. In the laboratory, you find that a sample of this salt produced a 0.195-g mixture of gaseous NO2 and O2 with a total pressure of 725 mm Hg at 35 C in a 125-mL flask (and black, solid CuO was left as a residue). What is the average molar mass of the gas mixture? What are the mole fractions of NO2 and O2 in the mixture? What amount of each gas b in the mixture? Do these amounts reflect the relative amounts of NO2 and O2 expected based on the balanced equation? Is it possible that the fact that some NO2 molecules combine to give N2O4 plays a role? Heating copper(II) nitrate produces nitrogen dioxide and oxygen gas and leaves a residue of copper(ll) oxide.arrow_forward
- A sample of natural gas is 85.2% methane, CH4, and 14.8% ethane, C2H6, by mass. What is the density of this mixture at 18C and 771 mmHg?arrow_forwardA typical barometric pressure in Redding. California, is about 750 mm Hg. Calculate this pressure in atm and kPa.arrow_forwardRaoul Pictet, the Swiss physicist who first liquefied oxygen, attempted to liquefy hydrogen. He heated potassium formate, KCHO2, with KOH in a closed 2.50-Lvessel. KCHO2(s)+KOH(s)K2CO3(s)+H2(g) If 75.0 g of potassium formate reacts in a 2.50-L vessel, which was initially evacuated, what pressure of hydrogen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forward
- A person exhales about 5.8 102 L of carbon dioxide per day (at STP). The carbon dioxide exhaled by an astronaut is absorbed from the air of a space capsule by reaction with lithium hydroxide, LiOH. 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) How many grams of lithium hydroxide are required per astronaut per day?arrow_forward5-107 If 60.0 g of NH3 occupies 35.1 L under a pressure of 77.2 in. Hg, what is the temperature of the gas, in °C?arrow_forwardYou have an equimolar mixture of the gases SO2 and O2, along with some He, in a container fitted with a piston. The density of this mixture at STP is 1.924 g/L. Assume ideal behavior and constant temperature and pressure. a. What is the mole fraction of He in the original mixture? b. The SO2 and O2 react to completion to form SO3. What is the density of the gas mixture after the reaction is complete?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning