Concept explainers
(a)
Interpretation:
The amount of each isotope present after 8.0 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 51P
After 8.0 days,
Amount of Iodine-131 left = 32 mg
Amount of Xenon-131 formed = 32 mg
Explanation of Solution
Given Information:
N0 = 64 mg
t1/2 = 8 days
Calculation:
After 8.0 days, the initial concentration of Iodine -131 reduces to half of its initial concentration and converts to Xenon-131.
Thus,
Hence,
Amount of Iodine-131 left = 32 mg
Amount of Xenon-131 formed = 64 mg − 32 mg = 32 mg
(b)
Interpretation:
The amount of each isotope present after 16 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 51P
After 16.0 days,
Amount of Iodine-131 left = 16 mg
Amount of Xenon-131 formed = 48 mg
Explanation of Solution
Given Information:
N0 = 64 mg
t1/2 = 8 days
t = 16.0 daysCalculation:
After 16 days, amount of iodine-131 would be defined by N(t),where t is 16.0 days, as
Hence, the amount of Iodine-131 decays and converts to Xenon. Therefore,
Amount of Iodine-131 left after 16.0 days = 16 mg
Amount of Xenon-131 formed after 16.0 days = 64 mg − 16mg = 48 mg
(c)
Interpretation:
The amount of each isotope present after 24 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 51P
After 24.0 days,
Amount of Iodine-131 left = 8 mg
Amount of Xenon-131 formed = 56 mg
Explanation of Solution
Given Information:
N0 = 64 mg
t1/2 = 8 days
t = 24.0 days
Calculation:
After 24.0 days, amount of iodine-131 would be defined by N(t),where t is 24.0 days, as
Hence, the amount of Iodine-131 decays and converts to Xenon. Therefore,
Amount of Iodine-131 left after 24.0 days = 8 mg
Amount of Xenon-131 formed after 24.0 days = 64 mg − 8 mg = 56 mg
(d)
Interpretation:
The amount of each isotope present after 32 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant

Answer to Problem 51P
After 32.0 days,
Amount of Iodine-131 left = 4 mg
Amount of Xenon-131 formed = 60 mg
Explanation of Solution
Given Information:
N0 = 64 mg
t1/2 = 8 days
t = 32.0 days
Calculation:
After 32 days, amount of iodine-131 would be defined by N(t),where t is 32.0 days, as
Hence, the amount of Iodine-131 decays and converts to Xenon. Therefore,
Amount of Iodine-131 left after 32.0 days = 4 mg
Amount of Xenon-131 formed after 32.0 days = 64 mg − 4 mg = 60 mg
Want to see more full solutions like this?
Chapter 10 Solutions
GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
- Basic strength of organic bases.arrow_forwardNucleophilic Aromatic Substitution: What is the product of the reaction? What is the name of the intermediate complex? *See imagearrow_forwardPredict the final product. If 2 products are made, list which should be “major” and “minor” *see attachedarrow_forward
- Nucleophilic Aromatic Substitution: What is the product of the reaction? *see imagearrow_forwardShow the correct sequence to connect the reagent to product. * see imagearrow_forwardThe answer here says that F and K have a singlet and a doublet. The singlet and doublet are referring to the H's 1 carbon away from the carbon attached to the OH. Why don't the H's two carbons away, the ones on the cyclohexane ring, cause more peaks on the signal?arrow_forward
- Draw the Birch Reduction for this aromatic compound and include electron withdrawing groups and electron donating groups. *See attachedarrow_forwardShow the correct sequence to connect the reagent to product. * see imagearrow_forwardBlocking Group are use to put 2 large sterically repulsive group ortho. Show the correct sequence toconnect the reagent to product with the highest yield possible. * see imagearrow_forward
- Elimination-Addition: What molecule was determined to be an intermediate based on a “trapping experiment”? *please solve and see imagearrow_forwardShow the correct sequence to connect the reagent to product. * see imagearrow_forwardPredict the final product. If 2 products are made, list which should be “major” and “minor”. **see attachedarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





