ELECTRIC CIRCUITS-W/MASTERINGENGINEERING
11th Edition
ISBN: 9780134894300
Author: NILSSON
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 48P
a)
To determine
Calculate the value of capacitance.
b)
To determine
Calculate the percentage increase of magnitude, to maintain
c)
To determine
Calculate the percentage increase in line loss, when the capacitor is removed from the circuit.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q2/For the unity-feedback system where G(s) = K/[s (s+3) (s+ 5)], find the range of
gain, K, for stability, instability, and the value of gain for marginal stability. For
marginal stability also. Use the Nyquist criterion.
240
Q3/Q1/For the system G(s)=
H(s)=1
(s+2)(s+4)(s+5)
a. Draw the Bode log-magnitude and phase plots.
b. Evaluate gain margin, phase margin, zero dB frequency, and 180°
¿B=2020
In the Figure 2
a) Find the Norton equivalent circuit which supplies power to RL.
b) How much is RL,max for transferring maximum power RL?
c) If we replace the load with R'L,max = 2 RL,max, calculated in part (b), what will be the
voltage at R'L,max?
18V
18A
3Ω
ΖΩ
4Q
ww
ww
ww
ΘΩ
Figure 2
w
5Ω
RL
Chapter 10 Solutions
ELECTRIC CIRCUITS-W/MASTERINGENGINEERING
Ch. 10.2 - For each of the following sets of voltage and...Ch. 10.2 - Compute the power factor and the reactive factor...Ch. 10.3 - The periodic triangular current in Example 9.4,...Ch. 10.4 - A load consisting of a 1.35 kΩ resistor in...Ch. 10.5 - The voltage at the terminals of a load is 250...Ch. 10.5 - Find the phasor voltage Vs in the circuit shown if...Ch. 10.6 - Find the average power delivered to the 100Ω...Ch. 10.6 - Find the average power delivered to the 400Ω...Ch. 10.6 - Prob. 11APCh. 10.6 - Solve Example 10.12 if the voltage source is...
Ch. 10 - Prob. 1PCh. 10 - A college student wakes up on a warm day. The...Ch. 10 - Show that the maximum value of the instantaneous...Ch. 10 - A load consisting of a 480 Ω resistor in parallel...Ch. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Find the average power delivered by the ideal...Ch. 10 - The op amp in the circuit shown in Fig. P10.8 is...Ch. 10 - Find the average power dissipated in the 40 Ω...Ch. 10 - The load impedance in Fig. P10.10 absorbs 2.5 kW...Ch. 10 - Find the rms value of the periodic current shown...Ch. 10 - The periodic current shown in Fig. P10.11...Ch. 10 - Find the rms value of the periodic voltage shown...Ch. 10 - Find the rms value of the periodic voltage shown...Ch. 10 - A personal computer with a monitor and keyboard...Ch. 10 - Prob. 16PCh. 10 - Find VL (rms) and θ for the circuit in Fig. P10.17...Ch. 10 - Find the average power, the reactive power, and...Ch. 10 - The voltage Vg in the frequency-domain circuit...Ch. 10 - Prob. 20PCh. 10 - The two loads shown in Fig. P10.21 can be...Ch. 10 - Two 125 V(rms) loads are connected in parallel....Ch. 10 - Prob. 23PCh. 10 - Three loads are connected in parallel across a 250...Ch. 10 - The three loads in Problem 10.24 are fed from a...Ch. 10 - Prob. 26PCh. 10 - The three loads in the circuit in Fig. P10.27 can...Ch. 10 - The three loads in the circuit seen in Fig. P10.28...Ch. 10 - Suppose the circuit shown in Fig. P10.28...Ch. 10 - The three loads in the circuit seen in Fig. P10.30...Ch. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - A factory has an electrical load of 1600 kW at a...Ch. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Find the average power delivered to the 8 Ω...Ch. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - The variable resistor in the circuit shown in Fig....Ch. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - The values of the parameters in the circuit shown...Ch. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Prob. 57PCh. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - The ideal transformer connected to the 5 kΩ load...Ch. 10 - Prob. 61PCh. 10 - Prob. 62PCh. 10 - Prob. 63PCh. 10 - Prob. 66PCh. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - Prob. 71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Don't use ai to answer I will report you answerarrow_forwardBW=1MHZ For Johnson-Nyquist Noise Generator (or Thermal Noise Generator), the device utilizes the thermal noise that naturally arises from the random motion of electrons in resistors at a non-zero temperature. The voltage is arising from thermal noise in two resistors of 80 and 120 Qat Temperature T=290 °k: 1-Write the equations of v(t), 12(t), up on the circuit diagram of series and parallel connecti 2- Apply the equation v(t) to find Vrms for series connection scheme. 3- Find inrms for Series scheme 4- Find the Vrms for series scheme. By using i̟rms √³(+)O v²(t) 80 120 ww R₁ R₂ Gi G if(t) 1/80 1/120arrow_forwardFor Johnson-Nyquist Noise Generator (or Thermal Noise Generator), the device utilizes the thermal noise that naturally arises from the random motion of electrons in resistors at a non-zero temperature. The voltage is arising from thermal noise in two resistors of 80 and 120 Qat Temperature T=290 °k: 1-Write the equations of v(t), 12(t), up on the circuit diagram of series and parallel connecti 2- Apply the equation v(t) to find Vrms for series connection scheme. 3- Find inrms for parallel scheme 4- Find the Vrms for series scheme. By using inrms 80 Q 120 ww R₁ R₂ v²(t) Gi i²(t) 1/80 1/120arrow_forward
- Vcc=-12 V;R1=33 kΩ;RC=1.8 kΩ;βDC = 150;RE=560Ω;R2=5.6 k Ω確定圖5-38中的I1、I2和IB。 課本給的答案A: I1=315μA;I2=288μA ;IB=27μA,請教我計算過程arrow_forwardConsider the following circuit, assuming the switch has been in the same position for a long period of time before t = 0: Vx L iL R3 R2 R₁ Is + Vo - コロ >Where Is = 100 mA,R=2202, R2 = 4702,R3 =4702,L= 1 mH. As indicated on the diagram, before t = 0, the switch is closed, after t = 0 the switch is open. 1. What are Ve and Vo before the switch shown opens (answer to within 1% accuracy)? Vx = V, Vo = V 2. What is the T of the RL circuit after the switch operates (answer to within 1% accuracy)? T= μs 3. Complete the derivation for the inductor current in (t) differential equation below by filling in the blank coefficients (answer to within 1% accuracy): diy(1) dt di (0) + iz (t)+ = 0 4. Hence or otherwise, find the time domain expression for Vo(t) (answer to within 1% accuracy): Vo(t)= exp(arrow_forward確定圖5-38中的I1、I2和IB。 Vcc=-12 V;R1=33 kN;RC=1.8 kN;βDC = 150;RE=560;R2=5.6 kN 圖 5-38arrow_forward
- Consider the following circuit: Vs R₁ Vx ww C'₁ R2 Where Vs = 3.3 cos(2000t-10) VR:=2202 R2 = 1002,L=1mH, Ci = 22 nF, C2 = 47 nF N.B. We have been using cosine as the basis for our phasors. 1. What is the impedance of each of R, Ci, L (answer to within 1%): Z RI = +j Q Zci= +j QZL= +jQ 心 2. Complete the following KCL for node Vo, assuming current flowing out of the node is positive (answer to within 1%): 0= +j )+Vo/ +j0)+Vo/(0+j 回回回 3. Hence or otherwise solve for Vo in phasor form (answer to within 1% amplitude and 5 degrees of phase): Vo = ° V 回 4. Convert this phasor to a time domain expression for Vo(t) (answer to within 1% amplitude and 5 degrees of phase): Vo(t) = cos( t+ Vo 1arrow_forwardis pf leading, lagging or neither?arrow_forward*please use pen and paper to show work (thank you!!!)* Design a synchronous binary up-counter using 4 negative edge-triggered JK flip-flops provided with a clock. The states (sequences) 1100, 1001 and 1000 are considered as unused states. (i) Draw the state diagram of the counter. (ii) Build the counter’s state table showing the synchronous inputs of the JK flip-flops as well. (iii) Using Karnaugh-maps, find the minimal sum-of-products (SOP) form of the equations for the inputs to the flip-flops; assume the next states of the unused combinations to be <don’t care states=. (iv) Draw the logic circuit of the counter.arrow_forward
- Solve this problem and show all of the workarrow_forwardDesign a fuel-cell – Supercapacitor hybrid locomotive with 640 horsepower and a traveling range of 500 km per fully charged hydrogen tank, and consumption rate of 500 Wh/km. The fuel cell provides the driving range and supercapacitor captures the regenerative breaking energy to run the accessories. Assume fuel cell efficiency at 50%. 1hoursepower = 750 W Calculate the size (volume in liter) of a pressurized hydrogen storage tank at 700 bar pressure to deliver the traveling range for the vehicle. Fuel cell voltage at the cell level is 1V. Calculate the volume of solid-state hydrogen storage tank for the vehicle if the solid NaAlH4 is used as a hydrogen storage material. The density of NaAlH4 is 2.8 g/cm3. Atomic weights: Na=23g, Al=27g, and H=1g Calculate the total amount of platinum catalyst loading inside the fuel cell stack, and cost of catalyst if Pt cost as $30/g. Assume catalyst loading on the anodes at 0.02mg/cm2 and 0.04mg/cm2 on the…arrow_forward4. Design an operational amplifier circuit to implement the following mathematical equation. 0.25 dv dtt dvo + ·+ V₁ = Vi dtarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
02 - Sinusoidal AC Voltage Sources in Circuits, Part 1; Author: Math and Science;https://www.youtube.com/watch?v=8zMiIHVMfaw;License: Standard Youtube License