Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 40E
To determine
In what circumstances the shared electron pair to be in equal distance on average from each of the atoms that participates in a covalent bond has to be explained.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The bond length in F2 is 1.417 Å, instead of twice theatomic radius of F, which is 1.28 Å. What can account forthe unexpected length of the F_ F bond?
If the bonding energy, in terms of (r), between two ions is (
number.
a) Find the repulsive and attractive forces between the two ions.
b) If the bonding energy between the two ions at the equilibrium state is given as
ny
r+1), x and y are constant and n is an integer
Find the smallest distance between the two ions to achieve the state of equilibrium.
(x1-n
\ny,
1-n
Can someone show step by step solution? thanks
Chapter 10 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 10 - Prob. 1MCCh. 10 - Prob. 2MCCh. 10 - Prob. 3MCCh. 10 - Prob. 4MCCh. 10 - Prob. 5MCCh. 10 - Prob. 6MCCh. 10 - Prob. 7MCCh. 10 - Prob. 8MCCh. 10 - Prob. 9MCCh. 10 - Prob. 10MC
Ch. 10 - Prob. 11MCCh. 10 - Prob. 12MCCh. 10 - Prob. 13MCCh. 10 - Prob. 14MCCh. 10 - Prob. 15MCCh. 10 - Prob. 16MCCh. 10 - Prob. 17MCCh. 10 - Prob. 18MCCh. 10 - Prob. 19MCCh. 10 - Prob. 20MCCh. 10 - Prob. 21MCCh. 10 - Prob. 22MCCh. 10 - Prob. 23MCCh. 10 - Prob. 24MCCh. 10 - Prob. 25MCCh. 10 - Prob. 26MCCh. 10 - Prob. 27MCCh. 10 - Prob. 28MCCh. 10 - Prob. 29MCCh. 10 - Prob. 30MCCh. 10 - Prob. 31MCCh. 10 - Prob. 32MCCh. 10 - Prob. 33MCCh. 10 - Prob. 34MCCh. 10 - Prob. 35MCCh. 10 - Prob. 36MCCh. 10 - Prob. 37MCCh. 10 - Prob. 38MCCh. 10 - Prob. 39MCCh. 10 - Prob. 40MCCh. 10 - Prob. 1ECh. 10 - Prob. 2ECh. 10 - Prob. 3ECh. 10 - Prob. 4ECh. 10 - Prob. 5ECh. 10 - Prob. 6ECh. 10 - Prob. 7ECh. 10 - Prob. 8ECh. 10 - Prob. 9ECh. 10 - Prob. 10ECh. 10 - Prob. 11ECh. 10 - The Bronze Age got its name from the ability of...Ch. 10 - Prob. 13ECh. 10 - What energy change would you expect when a...Ch. 10 - Prob. 15ECh. 10 - Prob. 16ECh. 10 - Prob. 17ECh. 10 - Prob. 18ECh. 10 - Prob. 19ECh. 10 - Prob. 20ECh. 10 - Prob. 21ECh. 10 - Prob. 22ECh. 10 - Prob. 23ECh. 10 - Prob. 24ECh. 10 - Prob. 25ECh. 10 - Prob. 26ECh. 10 - Prob. 27ECh. 10 - Prob. 28ECh. 10 - Prob. 29ECh. 10 - Prob. 30ECh. 10 - Prob. 31ECh. 10 - Prob. 32ECh. 10 - Prob. 33ECh. 10 - Prob. 34ECh. 10 - Prob. 35ECh. 10 - Prob. 36ECh. 10 - Prob. 37ECh. 10 - Prob. 38ECh. 10 - Prob. 39ECh. 10 - Prob. 40ECh. 10 - Prob. 41ECh. 10 - Prob. 42ECh. 10 - Prob. 43ECh. 10 - How many atoms of which elements are present in a...Ch. 10 - Prob. 45ECh. 10 - Prob. 46ECh. 10 - Prob. 47ECh. 10 - Prob. 48ECh. 10 - Prob. 49ECh. 10 - Prob. 50ECh. 10 - Prob. 51ECh. 10 - Prob. 52ECh. 10 - Prob. 53ECh. 10 - Prob. 54ECh. 10 - Prob. 55ECh. 10 - Prob. 56ECh. 10 - Prob. 57ECh. 10 - Prob. 58ECh. 10 - Prob. 59ECh. 10 - Prob. 60ECh. 10 - Prob. 61ECh. 10 - Prob. 62E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (b) Describe the nature and origin of various forces existing between the atoms of a crystal. Explain the formation of a stable bond using the potential energy versus interatomic distance curve. Assume that the potential energy of two particles in the field of each other is given by U(R) = - R where A and B are constants. R9 (i) Show that the particles form a stable compound for R= R. = (9B/A)/8 (R, is equilibrium separation) i) Show that for stable configuration, the energy of attraction is nine times the energy of repulsion. 8A (iii) Show that the potential energy of the system under stable configuration is 9Rearrow_forwardPls help ASAP. Pls show all work annd circle the final answer.arrow_forwardThe atomic radii of a divalent cation and a monovalent anion are 0.074 nm and 0.128 nm, respectively. Calculate the force of attraction between these two ions at their equilibrium interionic separation (i.e., when the ions just touch one another) and the force of repulsion at the same distance.arrow_forward
- The bond length in the BrF molecule is 178 pm and the measured dipole moment is 1.29 D (debyes). What is the magnitude of the negative charge (in units of the electronic charge e) on F in BrF? (1 debye = 3.34 × 10−30 coulomb-meters; electronic charge = e = 1.6 × 10−19 coulombs). A. 0.15 B. 0.24 C. 0.33 D. 1.00 E. 1.6 × 10−19arrow_forwardIn solid KCI the smallest distance between the centers of a. potassium ion and a chloride ion is 314 pm. Calculate the length of the edge of the unit cell and the density of KCI, assuming it has the same structure as sodium chloride.arrow_forwardA + Given that B 7-10- == 13) Suppose that the interaction energy between two atoms is given by E (r) the atoms from a stable molecule with an internuclear distance of 0.3 nm and a dissociation energy of 4 eV, calculate A and B. Also calculate the force require to break the molecule and the critical distance between the nuclei for which this occurs.arrow_forward
- The interaction between an atom and a diatomic molecule is described by a ‘repulsive’ potential energy surface. What distribution of vibrational and translational energies among the reactants is most likely to lead to a successful reaction? Describe the distribution of vibrational and translational energies among the products for these most successful reactions.arrow_forwardConsider a model of a diatomic molecule with pointmass atoms of mass m1 and m2, separated by a distance R. (a) Show that the rotational inertia of the molecule is I= μR2, where the reduced mass μ = m1 m2/(m1 +m2). (b) Compute the rotational inertia of NaCl, which has a bond length of 0.236 nm. Assume the most common isotopes of sodium and chlorine.arrow_forwardThe CO molecule has a dipole moment of 0.480x10-30 C m. Given that its equilibrium bond distance is 212 pm, what is the magnitude of the effective charge that causes this dipole moment? Give your answer in units of the charge of an electronarrow_forward
- The internuclear distance (bond length) of carbon monoxide molecule is 1.13 Å. Calculate the energy (in joules and eV) of this molecule in the first excited rotational level. Also calculate the angular velocity of the molecule. Given atomic masses of 12^C = 1.99x10^-26 kg; 16^O = 2.66x10^-26 kg.arrow_forwardShow that the moment of inertia of a diatomic molecule composed of atoms of masses mA and mB and bond length R is equal to meffR2, where meff = mAmB/(mA + mB).arrow_forwardCalculate the y-component of the center of mass of the following molecule. Answer in Angstroms (Å), a distance unit. The atomic mass unit is u. (Note: the atoms used here might not exist in nature.) • e = 1.3 Å %3D • m = 5 u • M = 14 u • e = 98° %3D m Ө/2 Ө/2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY