EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 10, Problem 32P
To determine

To Compute: A.(B×C)=C.(A×B)=B.(C×A)

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

  A=axi^+ayj^+azk^B=bxi^+byj^+bzk^C=cxi^+cyj^+czk^

Formula used:

The property of vector cross product:

  · i^ ×j^=k^,  j^ ×k^=i^,  k^ ×i^=j^· j^ ×i^=k^,  k^ ×j^=i^,  i^ ×k^=j^· i^ ×i^=0,  j^ ×j^=0,  k^ ×k^=0

The properties of vector dot product:

  · i^.j^=0,  j^.k^=0,  k^.i^=0, · j^.i^=0,  k^.j^=0,  i^.k^=0· i^ i^=1,  j^ j^=1, k^ k^=1

Calculation:

Calculation of A.(B×C) :

A .( B × C )=( a x i ^ + a y j ^ + a z k ^ ).[ ( b x i ^ + b y j ^ + b z k ^ )×( c x i ^ + c y j ^ + c z k ^ ) ] =( a x i ^ + a y j ^ + a z k ^ ).[ b x c x ( i ^ × i ^ )+ b x c y ( i ^ × j ^ )+ b x c z ( i ^ × k ^ )+ b y c x ( j ^ × i ^ )+ b y c y ( j ^ × j ^ )+ b y c z ( j ^ × k ^ )                                                           + b z c x ( k ^ × i ^ )+ b z c y ( k ^ × j ^ )+ b z c z ( k ^ × k ^ ) ]

   =( a x i ^ + a y j ^ + a z k ^ ).[ b x c x ( 0 )+ b x c y ( k ^ )+ b x c z ( j ^ )+ b y c x ( k ^ )+ b y c y ( 0 )+ b y c z ( i ^ )                                                           + b z c x ( j ^ )+ b z c y ( i ^ )+ b z c z ( 0 ) ] =( a x i ^ + a y j ^ + a z k ^ ).[ b x c y ( k ^ )+ b x c z ( j ^ )+ b y c x ( k ^ )+ b y c z ( i ^ )+ b z c x ( j ^ )+ b z c y ( i ^ ) ]

   =( a x i ^ + a y j ^ + a z k ^ ).[ ( b y c z b z c y )( i ^ )( b x c z + b z c x )( j ^ )+( b x c y b y c x )( k ^ ) ] = a x ( b y c z b z c y )( i ^ . i ^ ) a y ( b x c z + b z c x )( j ^ . j ^ )+ a z ( b x c y b y c x )( k ^ . k ^ )

   = a x ( b y c z b z c y ) a y ( b x c z + b z c x )+ a z ( b x c y b y c x ) = a x b y c z a x b z c y a y b x c z a y b z c x + a z b x c y a z b y c x       ...............(i)

   C .( A × B )=( c x i ^ + c y j ^ + c z k ^ ).[ ( a x i ^ + a y j ^ + a z k ^ )×( b x i ^ + b y j ^ + b z k ^ ) ] =( c x i ^ + c y j ^ + c z k ^ ).[ a x b x ( i ^ × i ^ )+ a x b y ( i ^ × j ^ )+ a x b z ( i ^ × k ^ )+ a y b x ( j ^ × i ^ )+ a y b y ( j ^ × j ^ )+ a y b z ( j ^ × k ^ )                                                           + a z b x ( k ^ × i ^ )+ a z b y ( k ^ × j ^ )+ a z b z ( k ^ × k ^ ) ]

   =( c x i ^ + c y j ^ + c z k ^ ).[ a x b x ( 0 )+ a x b y ( k ^ )+ a x b z ( j ^ )+ a y b x ( k ^ )+ a y b y ( 0 )+ a y b z ( i ^ )                                                           + a z b x ( j ^ )+ a z b y ( i ^ )+ a z b z ( 0 ) ] =( c x i ^ + c y j ^ + c z k ^ ).[ a x b y ( k ^ )+ a x b z ( j ^ )+ a y b x ( k ^ )+ a y b z ( i ^ )+ a z b x ( j ^ )+ a z b y ( i ^ ) ]

   =( c x i ^ + c y j ^ + c z k ^ ).[ ( a y b z a z b y )( i ^ )( a x b z + a z b x )( j ^ )+( a x b y a y b x )( k ^ ) ] = c x ( a y b z a z b y )( i ^ . i ^ ) c y ( a x b z + a z b x )( j ^ . j ^ )+ c z ( a x b y a y b x )( k ^ . k ^ ) = c x ( a y b z a z b y ) c y ( a x b z + a z b x )+ c z ( a x b y a y b x )

   = c x a y b z c x a z b y c y a x b z c y a z b x + c z a x b y c z a y b x = a x b y c z a x b z c y a y b x c z a y b z c x + a z b x c y a z b y c x       ...............(ii)

   B .( C × A )=( b x i ^ + b y j ^ + b z k ^ ).[ ( c x i ^ + c y j ^ + c z k ^ )×( a x i ^ + a y j ^ + a z k ^ ) ] =( b x i ^ + b y j ^ + b z k ^ ).[ c x a x ( i ^ × i ^ )+ c x a y ( i ^ × j ^ )+ c x a z ( i ^ × k ^ )+ c y a x ( j ^ × i ^ )+ c y a y ( j ^ × j ^ )+ c y a z ( j ^ × k ^ )                                                           + c z a x ( k ^ × i ^ )+ c z a y ( k ^ × j ^ )+ c z a z ( k ^ × k ^ ) ]

=( b x i ^ + b y j ^ + b z k ^ ).[ c x a x ( 0 )+ c x a y ( k ^ )+ c x a z ( j ^ )+ c y a x ( k ^ )+ c y a y ( 0 )+ c y a z ( i ^ )                                                           + c z a x ( j ^ )+ c z a y ( i ^ )+ c z a z ( 0 ) ]

   =( b x i ^ + b y j ^ + b z k ^ ).[ c x a y ( k ^ )+ c x a z ( j ^ )+ c y a x ( k ^ )+ c y a z ( i ^ )+ c z a x ( j ^ )+ c z a y ( i ^ ) ] =( b x i ^ + b y j ^ + b z k ^ ).[ ( c y a z c z a y )( i ^ )( c x a z + c z a x )( j ^ )+( c x a y c y a x )( k ^ ) ]

   = b x ( c y a z c z a y )( i ^ . i ^ ) b y ( c x a z + c z a x )( j ^ . j ^ )+ b z ( c x a y c y a x )( k ^ . k ^ ) = b x ( c y a z c z a y ) b y ( c x a z + c z a x )+ b z ( c x a y c y a x ) = b x c y a z b x c z a y b y c x a z b y c z a x + b z c x a y b z c y a x = a x b y c z a x b z c y a y b x c z a y b z c x + a z b x c y a z b y c x       ...............(iii)

Equations (i), (ii) and (iii) are equal.

Therefore,

  A.(B×C)=C.(A×B)=B.(C×A)

Conclusion:

Hence, A.(B×C)=C.(A×B)=B.(C×A)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
No chatgpt pls will upvote
Defination of voltage

Chapter 10 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY