(a)
ToCalculate: The ratio of spin angular momenta of Mars and Earth.
(a)
Answer to Problem 21P
Explanation of Solution
Given information :
Mars and Earth have nearly identical lengths of days.
Earth’s mass is
Radius is
Mars’ orbital radius is on an average
The Martian year is
Formula used :
The
Where, I is the moment of inertia and
Moment of inertia of sphere is
Where, M is the mass and R is the radius of the sphere.
Calculation:
As Mars and Earth have nearly identical lengths of days.
The ratio of spin angular momenta of Mars and Earth is:
Conclusion:
The ratio of spin angular momenta of Mars and Earth is 33:1.
(b)
ToCalculate: The ratio of spin kinetic energies of Mars and Earth.
(b)
Answer to Problem 21P
Explanation of Solution
Given information :
Mars and Earth have nearly identical lengths of days.
Earth’s mass is
Radius is
Mars’ orbital radius ison an average
The Martian year is
Formula used :
Rotational kinetic energy is:
Where, I is the moment of inertia and
Moment of inertia of sphere is
Where, M is the mass and R is the radius of the sphere.
Calculation:
As Mars and Earth have nearly identical lengths of days.
Conclusion:
The ratio of spin kinetic energies of Mars and Earth is 33:1.
(c)
ToCalculate: The ratioorbital angular momenta of Mars and Earth.
(c)
Answer to Problem 21P
Explanation of Solution
Given information :
Mars and Earth have nearly identical lengths of days.
Earth’s mass is
Radius is
Mars’ orbital radius ison an average
The Martian year is
Formula used :
The angular momentum is given by:
Where, I is the moment of inertia and
Moment of inertia of sphere is
Where, M is the mass and R is the radius of the sphere.
Calculation:
Treating Earth and Mars as point objects, the ratio of their orbital angular momenta is
Substituting for the moments of inertia and angular speeds yields
Where
Substitute numerical values for the three ratios and evaluate
Conclusion:
The ratioorbital angular momenta of Mars and Earth is,
(d)
ToCalculate: The ratio of orbital kinetic energies of Mars and Earth.
(d)
Answer to Problem 21P
Explanation of Solution
Given information :
Mars and Earth have nearly identical lengths of days.
Earth’s mass is
Radius is
Mars’ orbital radius is, on average
The Martian year is
Formula used :
Rotational kinetic energy is:
Where, I is the moment of inertia and
Moment of inertia of sphere is
Where, M is the mass and R is the radius of the sphere.
Calculation:
Conclusion:
The ration of orbital kinetic energies of Mars and Earth is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- I need correct answer not chatgptarrow_forwardWhat is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter? 0.445 ΧΩarrow_forwardFind the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d. Ag dFe = 2.47 ×arrow_forward
- Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring). d Ag = 2.51 dFe ×arrow_forwardShow that the units 1 v2/Q = 1 W, as implied by the equation P = V²/R. Starting with the equation P = V²/R, we can get an expression for a watt in terms of voltage and resistance. The units for voltage, V, are equivalent to [? v2 v2 A, are equivalent to J/C ✓ X . Therefore, 1 = 1 = 1 A V1 J/s Ω V-A X = 1 W. . The units for resistance, Q, are equivalent to ? The units for current,arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill