EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 10, Problem 30P

(a)

To determine

To Calculate:The value of |A×B| and compared with |A||B| .

The angle between the vectors A and B .

(a)

Expert Solution
Check Mark

Explanation of Solution

Given data:

  A=4i,B=6i+6j

Formula Used:

Consider vectors A and B are perpendicular the vector product of two vectors, that is,

  |A×B|=|A||B|sinϕ=|A||B|sin90o|A×B||A||B|=1.....(1)

Using scalar product of two vectors we can find angle between the vectors.

  |AB|=|A||B|cosϕϕ=cos1(AB|A||B|)

Calculation:

The vector product of vector A and B is

  A=4i,B=6i+6jA×B=(4i)×(6i+6j)=(4i×6i)+(4i×6j)=0+24k^=24k^

The magnitude of vector A and B are

  |A|=(4i^)2+02+02=4|B|=(6i^)2+(6j^)2+02=62|A||B|=4(62)=242|A×B|(|A||B|)=|24k^|242=0.707

Comparing with equation (1) , the vector A and B are not perpendicular.

The scalar product of vector A and B is

  AB=4i^(6i^+6j^)=24(i^i^)+24(i^j^)=24

The angle between the vectors A and B is

  ϕ=cos1(AB|A||B|)=cos1(24242)=cos1(12)=45o

Conclusion:

The angle between the vectors A and B is 45o .

(b)

To determine

To Calculate: The value of |A×B| and compared with |A||B| .

The angle between the vectors A and B .

(b)

Expert Solution
Check Mark

Explanation of Solution

Given data:

  A=4i^,B=6i^+6k^

Formula used:

We consider vectors A and B are perpendicular the vector product of two vectors, that is

  |A×B|=|A||B|sinϕ=|A||B|sin90o|A×B||A||B|=1.....(1)

Using scalar product of two vectors we can find angle between the vectors.

  |AB|=|A||B|cosϕϕ=cos1(AB|A||B|)

Calculation:

The vector product of vector A and B is

  A=4i^,B=6i^+6k^A×B=(4i^)×(6i^+6k^)=(4i^×6i)+(4i^×6k^)=0+24(j^)=24j^

The magnitude of vector A and B are

  |A|=(4i^)2+02+02=4|B|=(6i^)2+(6k^)2+02=62|A||B|=4(62)=242|A×B|(|A||B|)=|24j^|242=0.707

Comparing with equation (1) , the vector A and B are not perpendicular.

The scalar product of vector A and B is

  AB=4i^(6i^+6k^)=24(i^i^)+24(i^k^)=24

The angle between the vectors A and B is

  ϕ=cos1(AB|A||B|)=cos1(24242)=cos1(12)=45o

Conclusion:

The angle between the vectors A and B is 45° .

(c)

To determine

To Calculate: The value of |A×B| and compared with |A||B| .

The angle between the vectors A and B .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given data:

  A=2i^+3j^,B=3i^+2j^

Formula used:

We consider vectors A and B are perpendicular the vector product of two vectors, that is,

  |A×B|=|A||B|sinϕ=|A||B|sin90o|A×B||A||B|=1.....(1)

Using scalar product of two vectors we can find angle between the vectors.

  |AB|=|A||B|cosϕϕ=cos1(AB|A||B|)

Calculation:

The vector product of vector A and B is

  A=2i^+3j^,B=3i^+2j^A×B=6(i^×i^)+4(i^×j^)+9(j^×i^)+6(j^×j^)=6(0)+4k^9k^+6(0)=5k^

The magnitude of vector A and B are

  |A|=(2i^)2+(3j^)2+02=13|B|=(3i^)2+(2j^)2+02=13|A||B|=1313=13|A×B|(|A||B|)=|5k^|13=0.385

Comparing with equation (1) , the vector A and B are not perpendicular.

The scalar product of vector A and B is

  AB=(2i^+3j^)(3i^+2j^)=6(i^i^)+6(i^k^)=6(1)+6(1)=12

The angle between the vectors A and B is

  ϕ=cos1(AB|A||B|)=cos1(1213)=23o

Conclusion:

The angle between the vectors A and B is 23° .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
suggest a reason ultrasound cleaning is better than cleaning by hand?
Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)
What is integrated science. What is fractional distillation What is simple distillation

Chapter 10 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY