
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 27CQ
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider a closed triangular box resting within a horizontal electric field of magnitude E = 8.02 104 N/C as shown in the figure below.
A closed right triangular box with its vertical side on the left and downward slope on the right rests within a horizontal electric field vector E that points from left to right. The box has a height of 10.0 cm and a depth of 30.0 cm. The downward slope of the box makes an angle of 60 degrees with the vertical.
(a) Calculate the electric flux through the vertical rectangular surface of the box. kN · m2/C(b) Calculate the electric flux through the slanted surface of the box. kN · m2/C(c) Calculate the electric flux through the entire surface of the box. kN · m2/C
The figure below shows, at left, a solid disk of radius R = 0.600 m and mass 75.0 kg.
Tu
Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The disk and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the disk
and pulley a clockwise angular acceleration of 1.67 rad/s². The tension T in the upper (taut) segment of the belt is 145 N.
(a) What is the tension (in N) in the lower (slack) segment of the belt?
N
(b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the disk accelerates clockwise. The upper segment of the belt once again has a tension of 145 N, but now the tension in
the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s²)?
rad/s²
A bridge truss extends x = 217 m across a river (shown in the figure below) where 0 = 40°. The structure is free to slide horizontally to permit thermal expansion. The structural components are connected by pin joints, and the masses of the bars are small compared with the mass of a
1300 kg car at the center. Calculate the force of tension or compression in each structural component (in N).
B
D
T
T
T
T
T
22820
AB
AC
BC
||| || || ||
BD
N ---Select---
N ---Select---
N ---Select---
N ---Select---
DE
N ---Select---
T
DC=
N ---Select---
TEC
N ---Select---
с
✓
E
Chapter 10 Solutions
University Physics Volume 1
Ch. 10 - Check Your Understanding The fan blades on a...Ch. 10 - Check Your Understanding A centrifuge used in DNA...Ch. 10 - Check Your Understanding A boy jumps on a...Ch. 10 - Check Your Understanding A nuclear submarine...Ch. 10 - Check Your Understanding What is the moment of...Ch. 10 - Check Your Understanding A large ocean-going ship...Ch. 10 - Check Your Understanding The fan blades on a jet...Ch. 10 - Check Your Understanding A constant torque of...Ch. 10 - A clock is mounted on the wall. As you look at it,...Ch. 10 - What is the value of the angular acceleration of...
Ch. 10 - A baseball bat is swung. Do all points on the bat...Ch. 10 - The blades of a blender on a counter are rotating...Ch. 10 - If a rigid body has a constant angular...Ch. 10 - If a rigid body has a constant angular...Ch. 10 - If the angular acceleration of a rigid body is...Ch. 10 - A massless tether with a masses tied to both ends...Ch. 10 - Explain why centripetal acceleration changes the...Ch. 10 - In circular motion, a tangential acceleration can...Ch. 10 - Suppose a piece of food is on the edge of a...Ch. 10 - What if another planet the same size as Earth were...Ch. 10 - A solid sphere is rotating about an axis through...Ch. 10 - If a child walks toward the center of a...Ch. 10 - A discus thrower rotates with a discus in his hand...Ch. 10 - Does increasing the number of blades on a...Ch. 10 - The moment of inertia of a long rod spun around an...Ch. 10 - Why is the moment of inertia of a hoop that has a...Ch. 10 - What three factors affect the torque created by a...Ch. 10 - Give an example in which a small force exerts a...Ch. 10 - When reducing the mass of a racing bike, the...Ch. 10 - Can a single force produce a zero torque?Ch. 10 - Can a set of forces have a net torque that is zero...Ch. 10 - Can a set of forces have a net force that is zero...Ch. 10 - Prob. 25CQCh. 10 - If you were to stop a spinning wheel with a...Ch. 10 - Prob. 27CQCh. 10 - Calculate the angular velocity of Earth.Ch. 10 - A track star runs a 400-m race on a 400-m circular...Ch. 10 - A wheel rotates at a constant rate of...Ch. 10 - A particle moves 3.0 m along a circle of radius...Ch. 10 - A compact disc rotates at 500 rev/min. If the...Ch. 10 - Unreasonable results. The propeller of an aircraft...Ch. 10 - A gyroscope slows from an initial rate of 32.0...Ch. 10 - On takeoff, the propellers on a UAV (unmanned...Ch. 10 - The angular position of a rod varies as...Ch. 10 - A wheel has a constant angular acceleration of...Ch. 10 - During a 6.0-s time interval, a fly-wheel with a...Ch. 10 - The angular velocity of a rotating rigid body...Ch. 10 - A flywheel slows from 600 to 400 rev/min while...Ch. 10 - A wheel 1.0 m in diameter rotates with an angular...Ch. 10 - A vertical wheel with a diameter of 50 cm starts...Ch. 10 - A circular disk of radius 10 cm has a contant...Ch. 10 - The angular velocity vs. time for a fan on a...Ch. 10 - A rod of length 20 cm has two beads attached to...Ch. 10 - At its peak, a tornado is 60.0 m in diameter and...Ch. 10 - A man stands on a merry-go-round that is rotating...Ch. 10 - An ultracentrifuge accelerates from to 100,000 rpm...Ch. 10 - A wind turbine is rotating conterclockwise at 0.5...Ch. 10 - What is (a) the angular speed and (b) the linear...Ch. 10 - A child with mass 40 kg sits on the edge of a...Ch. 10 - A bicycle wheel with radius 0.3 m rotates from...Ch. 10 - The angular velocity of a flywheel with radius 1.0...Ch. 10 - A system of point particles is shown in the...Ch. 10 - (a) Calculate the rotational kinetic energy of...Ch. 10 - Calculate the rotational kinetic energy of a 12-kg...Ch. 10 - A baseball pitcher throws the ball in a motion...Ch. 10 - A diver goes into a somersault during a dive by...Ch. 10 - An aircraft is coming in for a landing at 300...Ch. 10 - If air resistance is present in the preceding...Ch. 10 - A neutron star of mass 21030kg and radius 10 km...Ch. 10 - An electric sander consisting of a rotating disk...Ch. 10 - A system consists of a disk of mass 2.0 kg and...Ch. 10 - While punting a football, a kicker rotates his leg...Ch. 10 - Using the parallel axis theorem, what is the...Ch. 10 - Find the moment of inertia of the rod in the...Ch. 10 - A uniform rod of mass 1.0 kg and length 2.0 m is...Ch. 10 - A pendulum consists of a rod of mass 2 kg and...Ch. 10 - A solid sphere of radius 10 cm is allowed to...Ch. 10 - Calculate the moment of inertia by direct...Ch. 10 - Two flywheel fo negligible mass and different...Ch. 10 - The cylindrical head bolts on a car are to be...Ch. 10 - (a) When opening a door, you push on it...Ch. 10 - When tightening a bolt, you push perpendicularly...Ch. 10 - What hanging mass must be placed on the cord to...Ch. 10 - A simple pendulum consists of a massless tether 50...Ch. 10 - Calculate the torque about the z-axis that is out...Ch. 10 - A seesaw has length 10.0 m and uniform mass 10.0...Ch. 10 - A pendulum consists ofa rod of mass 1 kg and...Ch. 10 - A torque of 5.00103Nm is required to raise a...Ch. 10 - A horizontal beam of length 3 m and mass 2.0 kg...Ch. 10 - What force must be applied to end of a rod along...Ch. 10 - What is the torque abot the origin of the force if...Ch. 10 - You have a grindstone (a disk) that is 90.0 kg,...Ch. 10 - Suppose you exert a force of 180 N tangential to a...Ch. 10 - A flywheel (l=50kgm2) starting from rest acquires...Ch. 10 - A constant torque is applied to a rigid body whose...Ch. 10 - A torque of 50.0Nm is applied to a grinding wheel...Ch. 10 - A flywheel (I=100.0kgm2) rotating at 500.0 rev/min...Ch. 10 - A uniform cylindrical grinding wheel of mass 50.0...Ch. 10 - Suppose when Earth was created, it was not...Ch. 10 - A pulley of moment of inertia 2.0kgm2 is mounted...Ch. 10 - A block of mass 3 kg slides down an inclined plane...Ch. 10 - The cart shown below moves across the table top as...Ch. 10 - A uniform rod of mass and length is held...Ch. 10 - A thin stick of mass 0.2 kg and length L=0.5m is...Ch. 10 - A wind turbine rotates at 20 rev/min. If its power...Ch. 10 - A clay cylinder of radius 20 cm on a potter’s...Ch. 10 - A uniform cylindrical grindstion has a mass of 10...Ch. 10 - A uniform disk of mass 500 kg and radius 0.25 m is...Ch. 10 - A propeller is accelerated from rest to an angular...Ch. 10 - A sphere of mass 1.0 kg and radius 0.5 m is...Ch. 10 - A uniform rod of length L and mass M is held...Ch. 10 - An athlete in a gym applies a constant force of 50...Ch. 10 - A 2-kg block on a frictionless inclined plane at...Ch. 10 - Small bodies of mass m1 and m2 are attached to...Ch. 10 - A cyclist is riding such that the wheels of the...Ch. 10 - Calculate the angular velocity of the orbital...Ch. 10 - A phonograph turntable rotating at 331/3rev/min...Ch. 10 - With the aid of a string, a gyroscope is...Ch. 10 - Suppose a piece of dust has fallen on a CD. If the...Ch. 10 - A system of point particles is rotating about a...Ch. 10 - Calculate the moment of inertia of a skater given...Ch. 10 - A stick of length 1.0 m and mass 6.0 kg is free to...Ch. 10 - A pendulum consists of a rod of length 2 m and...Ch. 10 - Calculate the torque of the 40-N force around the...Ch. 10 - Two children push on opposite sides of a door...Ch. 10 - Prob. 118APCh. 10 - An automobile engine can produce 200Nm of torque....Ch. 10 - A grindstone with a mass of 50 kg and radius 0.8 m...Ch. 10 - The angular acceleration of a rotating rigid body...Ch. 10 - Earth’s day has increased by 0.002 s in the last...Ch. 10 - A disk of mass m , radius R , and area A has a...Ch. 10 - Zorch, an archenemy of Rotation Man, decides to...Ch. 10 - A cord is wrapped around the rim of a solid...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
15.1 What purpose do the bla and lacZ genes serve in the plasmid vector ?
Genetic Analysis: An Integrated Approach (3rd Edition)
4. How do gross anatomy and microscopic anatomy differ?
Human Anatomy & Physiology (2nd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
Knowledge Booster
Similar questions
- no ai pleasearrow_forwardA block of mass m₁ = 1.85 kg and a block of mass m₂ is 0.360 for both blocks. 5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction m M, R m2 Ꮎ (a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.) m/s2 (b) Determine the tensions in the string on both sides of the pulley. left of the pulley right of the pulley N Narrow_forwardConsider as a system the Sun with Venus in a circular orbit around it. Find the magnitude of the change in the velocity of the Sun relative to the center of mass of the system during the time Venus completes half an orbit. Assume the mass of the Sun is 5.68 x 1029 kg, the mass of Venus is 4.87 × 1024 kg, its period is 1.94 × 107 s, and the radius of its orbit is 1.08 × 1011 m. Ignore the influence of other celestial objects. m/sarrow_forward
- Your physics instructor loves to put on physics magic shows for elementary school children. He is working on a new trick and has asked you, his star physics student, for assistance. The figure below shows the apparatus he is designing. Cup Hinged end - Support stick A small ball rests on a support so that the center of the ball is at the same height as the upper lip of a cup of negligible mass that is attached to a uniform board of length = 1.89 m. When the support stick is snatched away, the ball will fall and the board will rotate around the hinged end. As the board hits the table, your instructor wants the ball to fall into the cup. The larger the angle 0, the more time the elementary school children will have to watch the progress of the trick. But if the angle is too large, the cup may not pull ahead of the ball. For example, in the limiting case of 90°, the board would not fall at all! (a) Your instructor wishes to know the minimum angle 0 (in degrees) at which the support would…arrow_forwardno ai pleasearrow_forward= Consider the schematic of the molecule shown, with two hydrogen atoms, H, bonded to an oxygen atom, O. The angle between the two bonds is 106°. If the bond length r 0.106 nm long, locate the center of mass of the molecule. The mass mH of the hydrogen atom is 1.008 u, and the mass mo of the oxygen atom is 15.9999 u. (Use a coordinate system centered in the oxygen atom, with the x-axis to the right and the y-axis upward. Give the coordinates of the center of mass in nm.) XCM YOM = = H 53° 53° nm nm r Harrow_forward
- An approximate model for a ceiling fan consists of a cylindrical disk with four thin rods extending from the disk's center, as in the figure below. The disk has mass 2.60 kg and radius 0.200 m. Each rod has mass 0.850 kg and is 0.700 m long. HINT (a) Find the ceiling fan's moment of inertia about a vertical axis through the disk's center. (Enter your answer in kg • m².) kg. m² (b) Friction exerts a constant torque of magnitude 0.113 N m on the fan as it rotates. Find the magnitude of the constant torque provided by the fan's motor if the fan starts from rest and takes 15.0 s and 17.5 full revolutions to reach its maximum speed. (Enter your answer in N. m.) N.marrow_forwardA uniform, thin rod hangs vertically at rest from a frictionless axle attached to its top end. The rod has a mass of 0.780 kg and a length of 1.54 m. (Assume a coordinate system where the +y-direction is up and the +x-direction is to the right. The rod is free to swing about the axle in the x- y plane.) (a) You take a hammer and strike the bottom end of the rod. At the instant the hammer strikes, the force it applies to the rod is (15.71) N. What is the acceleration (in m/s²) of the rod's center of mass at this instant? (Express your answer in vector form.) m/s² a = (b) What is the horizontal force (in N) that the axle exerts on the rod at this same instant? (Express your answer in vector form.) F = N (c) The rod then returns to hanging at rest. You again strike the rod with the hammer, applying the same force, but now you strike it at its midpoint. What now is the acceleration of the center of mass (in m/s²) at the instant of impact? (Express your answer in vector form.) m/s² a = (d)…arrow_forwardFind the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 9.00 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.) N.m 10.0 N 30.0% 12.0 N 9.00 Narrow_forward
- An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 33.0 cm 16.5 cm Sidewall Ο 30.5 cm Tread i Enter a number. Find the moment of inertia of the sidewall and the moment of inertia of the tread region. Each can be modeled as a cylinder of nonzero thickness. What is the inner and outer radius for each case? What is the formula for the moment of inertia for a thick-walled cylinder? How can you find the mass of a hollow cylinder?…arrow_forwardYou have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…arrow_forward2nd drop down is "up" or "down"arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON