University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 103P
A uniform rod of length L and mass M is held vertically with one end resting on the floor as shown below. When the rod is released, it rotates around its lower end until it hits the floor. Assuming the lower end of the rod does not slip, what is the linear velocity of the upper end when is hits the floor?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .
An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Chapter 10 Solutions
University Physics Volume 1
Ch. 10 - Check Your Understanding The fan blades on a...Ch. 10 - Check Your Understanding A centrifuge used in DNA...Ch. 10 - Check Your Understanding A boy jumps on a...Ch. 10 - Check Your Understanding A nuclear submarine...Ch. 10 - Check Your Understanding What is the moment of...Ch. 10 - Check Your Understanding A large ocean-going ship...Ch. 10 - Check Your Understanding The fan blades on a jet...Ch. 10 - Check Your Understanding A constant torque of...Ch. 10 - A clock is mounted on the wall. As you look at it,...Ch. 10 - What is the value of the angular acceleration of...
Ch. 10 - A baseball bat is swung. Do all points on the bat...Ch. 10 - The blades of a blender on a counter are rotating...Ch. 10 - If a rigid body has a constant angular...Ch. 10 - If a rigid body has a constant angular...Ch. 10 - If the angular acceleration of a rigid body is...Ch. 10 - A massless tether with a masses tied to both ends...Ch. 10 - Explain why centripetal acceleration changes the...Ch. 10 - In circular motion, a tangential acceleration can...Ch. 10 - Suppose a piece of food is on the edge of a...Ch. 10 - What if another planet the same size as Earth were...Ch. 10 - A solid sphere is rotating about an axis through...Ch. 10 - If a child walks toward the center of a...Ch. 10 - A discus thrower rotates with a discus in his hand...Ch. 10 - Does increasing the number of blades on a...Ch. 10 - The moment of inertia of a long rod spun around an...Ch. 10 - Why is the moment of inertia of a hoop that has a...Ch. 10 - What three factors affect the torque created by a...Ch. 10 - Give an example in which a small force exerts a...Ch. 10 - When reducing the mass of a racing bike, the...Ch. 10 - Can a single force produce a zero torque?Ch. 10 - Can a set of forces have a net torque that is zero...Ch. 10 - Can a set of forces have a net force that is zero...Ch. 10 - Prob. 25CQCh. 10 - If you were to stop a spinning wheel with a...Ch. 10 - Prob. 27CQCh. 10 - Calculate the angular velocity of Earth.Ch. 10 - A track star runs a 400-m race on a 400-m circular...Ch. 10 - A wheel rotates at a constant rate of...Ch. 10 - A particle moves 3.0 m along a circle of radius...Ch. 10 - A compact disc rotates at 500 rev/min. If the...Ch. 10 - Unreasonable results. The propeller of an aircraft...Ch. 10 - A gyroscope slows from an initial rate of 32.0...Ch. 10 - On takeoff, the propellers on a UAV (unmanned...Ch. 10 - The angular position of a rod varies as...Ch. 10 - A wheel has a constant angular acceleration of...Ch. 10 - During a 6.0-s time interval, a fly-wheel with a...Ch. 10 - The angular velocity of a rotating rigid body...Ch. 10 - A flywheel slows from 600 to 400 rev/min while...Ch. 10 - A wheel 1.0 m in diameter rotates with an angular...Ch. 10 - A vertical wheel with a diameter of 50 cm starts...Ch. 10 - A circular disk of radius 10 cm has a contant...Ch. 10 - The angular velocity vs. time for a fan on a...Ch. 10 - A rod of length 20 cm has two beads attached to...Ch. 10 - At its peak, a tornado is 60.0 m in diameter and...Ch. 10 - A man stands on a merry-go-round that is rotating...Ch. 10 - An ultracentrifuge accelerates from to 100,000 rpm...Ch. 10 - A wind turbine is rotating conterclockwise at 0.5...Ch. 10 - What is (a) the angular speed and (b) the linear...Ch. 10 - A child with mass 40 kg sits on the edge of a...Ch. 10 - A bicycle wheel with radius 0.3 m rotates from...Ch. 10 - The angular velocity of a flywheel with radius 1.0...Ch. 10 - A system of point particles is shown in the...Ch. 10 - (a) Calculate the rotational kinetic energy of...Ch. 10 - Calculate the rotational kinetic energy of a 12-kg...Ch. 10 - A baseball pitcher throws the ball in a motion...Ch. 10 - A diver goes into a somersault during a dive by...Ch. 10 - An aircraft is coming in for a landing at 300...Ch. 10 - If air resistance is present in the preceding...Ch. 10 - A neutron star of mass 21030kg and radius 10 km...Ch. 10 - An electric sander consisting of a rotating disk...Ch. 10 - A system consists of a disk of mass 2.0 kg and...Ch. 10 - While punting a football, a kicker rotates his leg...Ch. 10 - Using the parallel axis theorem, what is the...Ch. 10 - Find the moment of inertia of the rod in the...Ch. 10 - A uniform rod of mass 1.0 kg and length 2.0 m is...Ch. 10 - A pendulum consists of a rod of mass 2 kg and...Ch. 10 - A solid sphere of radius 10 cm is allowed to...Ch. 10 - Calculate the moment of inertia by direct...Ch. 10 - Two flywheel fo negligible mass and different...Ch. 10 - The cylindrical head bolts on a car are to be...Ch. 10 - (a) When opening a door, you push on it...Ch. 10 - When tightening a bolt, you push perpendicularly...Ch. 10 - What hanging mass must be placed on the cord to...Ch. 10 - A simple pendulum consists of a massless tether 50...Ch. 10 - Calculate the torque about the z-axis that is out...Ch. 10 - A seesaw has length 10.0 m and uniform mass 10.0...Ch. 10 - A pendulum consists ofa rod of mass 1 kg and...Ch. 10 - A torque of 5.00103Nm is required to raise a...Ch. 10 - A horizontal beam of length 3 m and mass 2.0 kg...Ch. 10 - What force must be applied to end of a rod along...Ch. 10 - What is the torque abot the origin of the force if...Ch. 10 - You have a grindstone (a disk) that is 90.0 kg,...Ch. 10 - Suppose you exert a force of 180 N tangential to a...Ch. 10 - A flywheel (l=50kgm2) starting from rest acquires...Ch. 10 - A constant torque is applied to a rigid body whose...Ch. 10 - A torque of 50.0Nm is applied to a grinding wheel...Ch. 10 - A flywheel (I=100.0kgm2) rotating at 500.0 rev/min...Ch. 10 - A uniform cylindrical grinding wheel of mass 50.0...Ch. 10 - Suppose when Earth was created, it was not...Ch. 10 - A pulley of moment of inertia 2.0kgm2 is mounted...Ch. 10 - A block of mass 3 kg slides down an inclined plane...Ch. 10 - The cart shown below moves across the table top as...Ch. 10 - A uniform rod of mass and length is held...Ch. 10 - A thin stick of mass 0.2 kg and length L=0.5m is...Ch. 10 - A wind turbine rotates at 20 rev/min. If its power...Ch. 10 - A clay cylinder of radius 20 cm on a potter’s...Ch. 10 - A uniform cylindrical grindstion has a mass of 10...Ch. 10 - A uniform disk of mass 500 kg and radius 0.25 m is...Ch. 10 - A propeller is accelerated from rest to an angular...Ch. 10 - A sphere of mass 1.0 kg and radius 0.5 m is...Ch. 10 - A uniform rod of length L and mass M is held...Ch. 10 - An athlete in a gym applies a constant force of 50...Ch. 10 - A 2-kg block on a frictionless inclined plane at...Ch. 10 - Small bodies of mass m1 and m2 are attached to...Ch. 10 - A cyclist is riding such that the wheels of the...Ch. 10 - Calculate the angular velocity of the orbital...Ch. 10 - A phonograph turntable rotating at 331/3rev/min...Ch. 10 - With the aid of a string, a gyroscope is...Ch. 10 - Suppose a piece of dust has fallen on a CD. If the...Ch. 10 - A system of point particles is rotating about a...Ch. 10 - Calculate the moment of inertia of a skater given...Ch. 10 - A stick of length 1.0 m and mass 6.0 kg is free to...Ch. 10 - A pendulum consists of a rod of length 2 m and...Ch. 10 - Calculate the torque of the 40-N force around the...Ch. 10 - Two children push on opposite sides of a door...Ch. 10 - Prob. 118APCh. 10 - An automobile engine can produce 200Nm of torque....Ch. 10 - A grindstone with a mass of 50 kg and radius 0.8 m...Ch. 10 - The angular acceleration of a rotating rigid body...Ch. 10 - Earth’s day has increased by 0.002 s in the last...Ch. 10 - A disk of mass m , radius R , and area A has a...Ch. 10 - Zorch, an archenemy of Rotation Man, decides to...Ch. 10 - A cord is wrapped around the rim of a solid...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
What is the molarity of an aqueous solution that is 5.88% NaCl by mass? (Assume a density of 1.02 g/mL for the ...
Introductory Chemistry (6th Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
21. Which of the following motions is described by the motion diagram of Figure Q1 .21?
Figure Q1.21
An ice sk...
College Physics: A Strategic Approach (3rd Edition)
The reason for change in the mass of an atom when an alpha particle is emittedis to be explained. Concept intro...
Living By Chemistry: First Edition Textbook
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY