
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 15CQ
A discus thrower rotates with a discus in his hand before letting it go. (a) How does his moment of inertia change after releasing the discus? (b) What would be a good approximation to use in calculating the moment of inertia of the discus thrower and discus?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Cam mechanisms are used in many machines. For example, cams open and close the valves in your car engine to admit gasoline vapor to each cylinder and to allow the escape of exhaust.
The principle is illustrated in the figure below, showing a follower rod (also called a pushrod) of mass m resting on a wedge of mass M. The sliding wedge duplicates the function of a
rotating eccentric disk on a camshaft in your car. Assume that there is no friction between the wedge and the base, between the pushrod and the wedge, or between the rod and the guide
through which it slides. When the wedge is pushed to the left by the force F, the rod moves upward and does something such as opening a valve. By varying the shape of the wedge, the
motion of the follower rod could be made quite complex, but assume that the wedge makes a constant angle of 0 = 15.0°. Suppose you want the wedge and the rod to start from rest and
move with constant acceleration, with the rod moving upward 1.00 mm in 8.00 ms. Take m…
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 10 Solutions
University Physics Volume 1
Ch. 10 - Check Your Understanding The fan blades on a...Ch. 10 - Check Your Understanding A centrifuge used in DNA...Ch. 10 - Check Your Understanding A boy jumps on a...Ch. 10 - Check Your Understanding A nuclear submarine...Ch. 10 - Check Your Understanding What is the moment of...Ch. 10 - Check Your Understanding A large ocean-going ship...Ch. 10 - Check Your Understanding The fan blades on a jet...Ch. 10 - Check Your Understanding A constant torque of...Ch. 10 - A clock is mounted on the wall. As you look at it,...Ch. 10 - What is the value of the angular acceleration of...
Ch. 10 - A baseball bat is swung. Do all points on the bat...Ch. 10 - The blades of a blender on a counter are rotating...Ch. 10 - If a rigid body has a constant angular...Ch. 10 - If a rigid body has a constant angular...Ch. 10 - If the angular acceleration of a rigid body is...Ch. 10 - A massless tether with a masses tied to both ends...Ch. 10 - Explain why centripetal acceleration changes the...Ch. 10 - In circular motion, a tangential acceleration can...Ch. 10 - Suppose a piece of food is on the edge of a...Ch. 10 - What if another planet the same size as Earth were...Ch. 10 - A solid sphere is rotating about an axis through...Ch. 10 - If a child walks toward the center of a...Ch. 10 - A discus thrower rotates with a discus in his hand...Ch. 10 - Does increasing the number of blades on a...Ch. 10 - The moment of inertia of a long rod spun around an...Ch. 10 - Why is the moment of inertia of a hoop that has a...Ch. 10 - What three factors affect the torque created by a...Ch. 10 - Give an example in which a small force exerts a...Ch. 10 - When reducing the mass of a racing bike, the...Ch. 10 - Can a single force produce a zero torque?Ch. 10 - Can a set of forces have a net torque that is zero...Ch. 10 - Can a set of forces have a net force that is zero...Ch. 10 - Prob. 25CQCh. 10 - If you were to stop a spinning wheel with a...Ch. 10 - Prob. 27CQCh. 10 - Calculate the angular velocity of Earth.Ch. 10 - A track star runs a 400-m race on a 400-m circular...Ch. 10 - A wheel rotates at a constant rate of...Ch. 10 - A particle moves 3.0 m along a circle of radius...Ch. 10 - A compact disc rotates at 500 rev/min. If the...Ch. 10 - Unreasonable results. The propeller of an aircraft...Ch. 10 - A gyroscope slows from an initial rate of 32.0...Ch. 10 - On takeoff, the propellers on a UAV (unmanned...Ch. 10 - The angular position of a rod varies as...Ch. 10 - A wheel has a constant angular acceleration of...Ch. 10 - During a 6.0-s time interval, a fly-wheel with a...Ch. 10 - The angular velocity of a rotating rigid body...Ch. 10 - A flywheel slows from 600 to 400 rev/min while...Ch. 10 - A wheel 1.0 m in diameter rotates with an angular...Ch. 10 - A vertical wheel with a diameter of 50 cm starts...Ch. 10 - A circular disk of radius 10 cm has a contant...Ch. 10 - The angular velocity vs. time for a fan on a...Ch. 10 - A rod of length 20 cm has two beads attached to...Ch. 10 - At its peak, a tornado is 60.0 m in diameter and...Ch. 10 - A man stands on a merry-go-round that is rotating...Ch. 10 - An ultracentrifuge accelerates from to 100,000 rpm...Ch. 10 - A wind turbine is rotating conterclockwise at 0.5...Ch. 10 - What is (a) the angular speed and (b) the linear...Ch. 10 - A child with mass 40 kg sits on the edge of a...Ch. 10 - A bicycle wheel with radius 0.3 m rotates from...Ch. 10 - The angular velocity of a flywheel with radius 1.0...Ch. 10 - A system of point particles is shown in the...Ch. 10 - (a) Calculate the rotational kinetic energy of...Ch. 10 - Calculate the rotational kinetic energy of a 12-kg...Ch. 10 - A baseball pitcher throws the ball in a motion...Ch. 10 - A diver goes into a somersault during a dive by...Ch. 10 - An aircraft is coming in for a landing at 300...Ch. 10 - If air resistance is present in the preceding...Ch. 10 - A neutron star of mass 21030kg and radius 10 km...Ch. 10 - An electric sander consisting of a rotating disk...Ch. 10 - A system consists of a disk of mass 2.0 kg and...Ch. 10 - While punting a football, a kicker rotates his leg...Ch. 10 - Using the parallel axis theorem, what is the...Ch. 10 - Find the moment of inertia of the rod in the...Ch. 10 - A uniform rod of mass 1.0 kg and length 2.0 m is...Ch. 10 - A pendulum consists of a rod of mass 2 kg and...Ch. 10 - A solid sphere of radius 10 cm is allowed to...Ch. 10 - Calculate the moment of inertia by direct...Ch. 10 - Two flywheel fo negligible mass and different...Ch. 10 - The cylindrical head bolts on a car are to be...Ch. 10 - (a) When opening a door, you push on it...Ch. 10 - When tightening a bolt, you push perpendicularly...Ch. 10 - What hanging mass must be placed on the cord to...Ch. 10 - A simple pendulum consists of a massless tether 50...Ch. 10 - Calculate the torque about the z-axis that is out...Ch. 10 - A seesaw has length 10.0 m and uniform mass 10.0...Ch. 10 - A pendulum consists ofa rod of mass 1 kg and...Ch. 10 - A torque of 5.00103Nm is required to raise a...Ch. 10 - A horizontal beam of length 3 m and mass 2.0 kg...Ch. 10 - What force must be applied to end of a rod along...Ch. 10 - What is the torque abot the origin of the force if...Ch. 10 - You have a grindstone (a disk) that is 90.0 kg,...Ch. 10 - Suppose you exert a force of 180 N tangential to a...Ch. 10 - A flywheel (l=50kgm2) starting from rest acquires...Ch. 10 - A constant torque is applied to a rigid body whose...Ch. 10 - A torque of 50.0Nm is applied to a grinding wheel...Ch. 10 - A flywheel (I=100.0kgm2) rotating at 500.0 rev/min...Ch. 10 - A uniform cylindrical grinding wheel of mass 50.0...Ch. 10 - Suppose when Earth was created, it was not...Ch. 10 - A pulley of moment of inertia 2.0kgm2 is mounted...Ch. 10 - A block of mass 3 kg slides down an inclined plane...Ch. 10 - The cart shown below moves across the table top as...Ch. 10 - A uniform rod of mass and length is held...Ch. 10 - A thin stick of mass 0.2 kg and length L=0.5m is...Ch. 10 - A wind turbine rotates at 20 rev/min. If its power...Ch. 10 - A clay cylinder of radius 20 cm on a potter’s...Ch. 10 - A uniform cylindrical grindstion has a mass of 10...Ch. 10 - A uniform disk of mass 500 kg and radius 0.25 m is...Ch. 10 - A propeller is accelerated from rest to an angular...Ch. 10 - A sphere of mass 1.0 kg and radius 0.5 m is...Ch. 10 - A uniform rod of length L and mass M is held...Ch. 10 - An athlete in a gym applies a constant force of 50...Ch. 10 - A 2-kg block on a frictionless inclined plane at...Ch. 10 - Small bodies of mass m1 and m2 are attached to...Ch. 10 - A cyclist is riding such that the wheels of the...Ch. 10 - Calculate the angular velocity of the orbital...Ch. 10 - A phonograph turntable rotating at 331/3rev/min...Ch. 10 - With the aid of a string, a gyroscope is...Ch. 10 - Suppose a piece of dust has fallen on a CD. If the...Ch. 10 - A system of point particles is rotating about a...Ch. 10 - Calculate the moment of inertia of a skater given...Ch. 10 - A stick of length 1.0 m and mass 6.0 kg is free to...Ch. 10 - A pendulum consists of a rod of length 2 m and...Ch. 10 - Calculate the torque of the 40-N force around the...Ch. 10 - Two children push on opposite sides of a door...Ch. 10 - Prob. 118APCh. 10 - An automobile engine can produce 200Nm of torque....Ch. 10 - A grindstone with a mass of 50 kg and radius 0.8 m...Ch. 10 - The angular acceleration of a rotating rigid body...Ch. 10 - Earth’s day has increased by 0.002 s in the last...Ch. 10 - A disk of mass m , radius R , and area A has a...Ch. 10 - Zorch, an archenemy of Rotation Man, decides to...Ch. 10 - A cord is wrapped around the rim of a solid...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Method by which meteorologists keep track of the amount of rainfall is to be described. Concept Introduction : ...
Living By Chemistry: First Edition Textbook
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
WHAT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of genotype AA...
Campbell Biology in Focus (2nd Edition)
Which coastal area experiences the smallest tidal range? ____________
Applications and Investigations in Earth Science (9th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt plsarrow_forwardA rectangular current loop (a = 15.0 cm, b = 34.0 cm) is located a distance d = 10.0 cm near a long, straight wire that carries a current (Iw) of 17.0 A (see the drawing). The current in the loop is IL = 21.0 A. Determine the magnitude of the net magnetic force that acts on the loop. Solve in N. a b IL Iwarrow_forwardTwo long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm, r2 = 7.00 cm, and r3 = 13.0 cm. Solve in T. 12 d A √3arrow_forward
- I tried to solve this question, and I had an "expert" answer it and they got it wrong. I cannot answer this questionarrow_forwardEddie Hall is the current world record holder in the deadlift, a powerlifting maneuver in which a weighted barbell is lifted from the ground to waist height, then dropped. The figure below shows a side view of the initial and final positions of the deadlift. a 0 = 55.0° Fift h22.5 cm i hy = 88.0 cm b iarrow_forwardsolve for (_) Narrow_forward
- Two boxes of fruit on a frictionless horizontal surface are connected by a light string as in the figure below, where m₁ = 11 kg and m₂ = 25 kg. A force of F = 80 N is applied to the 25-kg box. mq m1 Applies T Peaches i (a) Determine the acceleration of each box and the tension in the string. acceleration of m₁ acceleration of m₂ tension in the string m/s² m/s² N (b) Repeat the problem for the case where the coefficient of kinetic friction between each box and the surface is 0.10. acceleration of m₁ acceleration of m₂ tension in the string m/s² m/s2 Narrow_forwardAll correct but t1 and t2 from part Aarrow_forwardThree long, straight wires are mounted on the vertices of an equilateral triangle as shown in the figure. The wires carry currents of I₁ = 3.50 A, I2 = 5.50 A, and I3 = 8.50 A. Each side of the triangle has a length of 34.0 cm, and the point (A) is located half way between (11) and (12) along one of the sides. Find the magnitude of the magnetic field at point (A). Solve in Teslas (T). I₁arrow_forward
- Number There are four charges, each with a magnitude of 2.38 μC. Two are positive and two are negative. The charges are fixed to the corners of a 0.132-m square, one to a corner, in such a way that the net force on any charge is directed toward the center of the square. Find the magnitude of the net electrostatic force experienced by any charge. ips que Mi Units estic re harrow_forwardTwo long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm, r2 = 7.00 cm, and r3 = 13.0 cm. Solve in T. 12 d A √3arrow_forwardThank you in advance, image with question is attached below.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License