Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 24P
Two balls with masses M and m are connected by a rigid rod of length L, and negligible mass as shown in Figure P10.24. For an axis perpendicular to the rod. (a) show that the system has the minimum moment of inertia when the axis passes through the center of mass. (b) Show that this moment of inertia is I = μL2, where μ = mM/(m + M).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A sphere with radius 0.245m has density ϝ that decreases with distance r from the center of the sphere according to =3.25x103kg/m^3-(9.50x103kg/m^4)r .
Part A
Calculate the total mass of the sphere.
Part B
Calculate the moment of inertia of the sphere for an axis along a diameter.
40. Two balls with masses M and m are connected by
rigid rod of length L and negligible mass as shown in
Figure P10.40. For an axis perpendicular to the rod
(a) show that the system has the minimum moment
of inertia when the axis passes through the center of
mass. (b) Show that this moment of inertia is Г-, L2
where umM/(m+ M)
Figure P10.40
A 3.8-mm-diameter merry-go-round is rotating freely with an angular velocity of 0.80 rad/s. Its total moment of inertia is 1300 kg⋅m2. Four people standing on the ground, each of mass 61 kg, suddenly step onto the edge of the merry-go-round.
What is the angular velocity of the merry-go-round now?
What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?
Chapter 10 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 10.1 - A rigid object rotates in a counterclockwise sense...Ch. 10.2 - Consider again the pairs of angular positions for...Ch. 10.3 - Ethan and Rebecca are riding on a merry-go-round....Ch. 10.4 - If you are trying to loosen a stubborn screw from...Ch. 10.5 - You turn off your electric drill and find that the...Ch. 10.7 - A section of hollow pipe and a solid cylinder have...Ch. 10.9 - A ball rolls without slipping down incline A,...Ch. 10 - (a) Find the angular speed of the Earths rotation...Ch. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - A wheel starts from rest and rotates with constant...
Ch. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - Review. Consider a tall building located on the...Ch. 10 - Prob. 8PCh. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Prob. 10PCh. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - Prob. 13PCh. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - Prob. 17PCh. 10 - Prob. 18PCh. 10 - Your grandmother enjoys creating pottery as a...Ch. 10 - Prob. 20PCh. 10 - You have just bought a new bicycle. On your first...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - Prob. 30PCh. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - Prob. 35PCh. 10 - Prob. 36APCh. 10 - Prob. 37APCh. 10 - Prob. 38APCh. 10 - Prob. 39APCh. 10 - Prob. 40APCh. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - Review. A clown balances a small spherical grape...Ch. 10 - Prob. 44CPCh. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - Prob. 46CPCh. 10 - A uniform, hollow, cylindrical spool has inside...Ch. 10 - A cord is wrapped around a pulley that is shaped...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardA long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardTwo particles of mass m1 = 2.00 kgand m2 = 5.00 kg are joined by a uniform massless rod of length = 2.00 m(Fig. P13.48). The system rotates in thexy plane about an axis through the midpoint of the rod in such a way that theparticles are moving with a speed of 3.00 m/s. What is the angular momentum of the system? FIGURE P13.48arrow_forward
- Two astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardFigure OQ10.8 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis. (d) The moment of inertia has the same small value for two axes. (e) The moment of inertia is the same for all three axes. Figure OQ10.8arrow_forward
- A student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardFigure OQ10.6 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis, (d) The moment of inertia is the same small value for two axes, (e) The moment of inertia is the same for all three axes.arrow_forwardA long, uniform rod of length L and mass M is pivoted about a frictionless, horizontal pin through one end. The rod is released from rest in a vertical position as shown in Figure P10.65. At the instant the rod is horizontal, find (a) its angular speed, (b) the magnitude of its angular acceleration, (c) the x and y components of the acceleration of its center of mass, and (d) the components of the reaction force at the pivot. Figure P10.65arrow_forward
- A buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardA wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P11.29). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P11.29arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License