EBK OPERATIONS MANAGEMENT
EBK OPERATIONS MANAGEMENT
12th Edition
ISBN: 9780100283961
Author: Stevenson
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 10, Problem 20P

a)

Summary Introduction

To determine: The mean of each sample.

a)

Expert Solution
Check Mark

Answer to Problem 20P

The mean of each sample is shown in Table 1.

Explanation of Solution

Given information:

Sample
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Calculation of mean of each sample:

Sample
Sl. No. 1 2 3 4
1 4.5 4.6 4.5 4.7
2 4.2 4.5 4.6 4.6
3 4.2 4.4 4.4 4.8
4 4.3 4.7 4.4 4.5
5 4.3 4.3 4.6 4.9
Mean 4.3 4.5 4.5 4.7

Table 1

Excel Worksheet:

EBK OPERATIONS MANAGEMENT, Chapter 10, Problem 20P , additional homework tip  1

Sample 1:

=4.5+4.2+4.2+4.3+4.35=4.3

The mean is calculated by adding each sample points. Adding the points 4.5, 4.2, 4.2, 4.3 and 4.3 and dividing by 5 gives mean of 4.3. The same process is followed for finding mean for other samples.

Hence, the mean of each sample is shown in Table 1

b)

Summary Introduction

To determine: The mean and standard deviation when the process parameters are unknown.

b)

Expert Solution
Check Mark

Answer to Problem 20P

The mean and standard deviation when the process parameters are unknown are 4.5 and 0.192.

Explanation of Solution

Given information:

Sample
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Calculation of mean and standard deviation:

Table 1 provides the mean for each sample points.

X¯¯=n=15X¯n=4.3+4.5+4.5+4.74=4.5 (1)

The mean is calculated by adding each mean of the samples. Adding the points 4.3, 4.5, 4.5 and 4.7 and dividing by 4 gives mean of 4.5.

S=1N1i=1N(xi-x¯)2=0.192

The standard deviation is calculated using the above formula and substituting the values of mean in the above formula and the resultant of 0.192 is obtained.

Hence, the mean and standard deviation when the process parameters are unknown are 4.5 and 0.192.

c)

Summary Introduction

To determine: The mean and standard deviation of the sampling distribution.

c)

Expert Solution
Check Mark

Answer to Problem 20P

The mean and standard deviation of the sampling distribution is4.5 and 0.086 respectively.

Explanation of Solution

Given information:

Sample
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Calculation of mean and standard deviation of the sampling distribution:

From calculation of mean of each samples, the mean for sampling distribution can be computed, the mean for sampling distribution is 4.5 (refer equation (1)).

σx¯=σn=0.1925=0.086 (2)

The standard deviation of the sampling distribution is calculated by dividing 0.192 with the square root of 5 which gives the resultant as 0.086.

Hence, the mean and standard deviation of the sampling distribution is 4.5 and 0.086 respectively.

d)

Summary Introduction

To determine: The three-sigma control limit for the process and alpha risk provided by them.

d)

Expert Solution
Check Mark

Answer to Problem 20P

The three-sigma control limits for the process are 4.758 and 4.242.

Explanation of Solution

Given information:

Sample
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Calculation of three-sigma control limit for the process:

=4.5±3.00(0.086)=4.5±0.258

UCL=4.5+0.258=4.758LCL=4.50.258=4.242 (3)

The three-sigma control limits for the process is calculated by multiplying 3.00 with 0.086 (refer equation (2)) and the resultant is added with 4.5 to get an upper control limit which is 4.758 and subtracted to get lower control limit which is 4.242. Using z-factor table z = +3.00 corresponds to 0.4987.

=0.5  0.4987 = 0.0013 in the tail.=2×0.0013=0.0026

The alpha risk is calculated to be as 0.0026.

Hence, the three-sigma control limits for the process are 4.758 and 4.242.

e)

Summary Introduction

To determine: The alpha risk for control limits of 4.14 and 4.86.

e)

Expert Solution
Check Mark

Answer to Problem 20P

The alpha risk for control limits of 4.14 and 4.86 is +4.1.

Explanation of Solution

Given information:

Sample
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Formula:

z=x-μσ

Calculation alpha risk for control limits of 4.14 and 4.86:

z=4.86-4.50.086=0.360.086=+4.19

The alpha risk is calculated by dividing the difference of 4.86 and 4.5 with 0.086 which gives +4.19 which is the risk is close to zero.         

Hence, the alpha risk for control limits of 4.14 and 4.86 is +4.1

f)

Summary Introduction

To determine: Whether any of the sample means are beyond the control limits.

f)

Expert Solution
Check Mark

Answer to Problem 20P

There are no sample means which lies beyond the control limits.

Explanation of Solution

Given information:

Sample
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Determination of whether any of the sample means are beyond the control limits:

Table 1 provides the sample means for each sample. From observation, it can be found that each sample mean are within the control limit of 4.14 and 4.86. Therefore, each sample means lies within the control limits of 4.14 and 4.86.

Hence, there are no sample means which lies beyond the control limits.

g)

Summary Introduction

To determine: Whether any of the samples are beyond the control limits.

g)

Expert Solution
Check Mark

Answer to Problem 20P

All points are within control limits.

Explanation of Solution

Given information:

SAMPLE
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9

Formula:

Mean Chart:

UCL=X¯¯+A2R¯LCL=X¯¯-A2R¯

Range Chart:

UCL=D4R¯LCL=D3R¯

Calculation of upper and lower control limits:

SAMPLE
1 2 3 4
4.5 4.6 4.5 4.7
4.2 4.5 4.6 4.6
4.2 4.4 4.4 4.8
4.3 4.7 4.4 4.5
4.3 4.3 4.6 4.9
Mean 4.3 4.5 4.5 4.7
Range .3 .4 .2 .4

From factors of three-sigma chart, A2 = 0.58; D3 = 0; D4 = 2.11.

Mean control chart:

X¯¯=i=14X¯n=4.3+4.5+4.5+4.74=4.5

Upper control limit:

UCL=X¯¯+A2R¯=4.5+(0.58×0.325)=4.689

The Upper control limit is calculated by adding the product of 0.58 and 0.325 with 4.5 which yields 4.689.

Lower control limit:

LCL=X¯¯-A2R¯=4.5(0.58×0.325)=4.311

The Lower control limit is calculated by subtracting the product of 0.58 and 0.325 with 4.5 which yields 4.311.

The UCL and LCL for mean charts are 4.686 and 4.311. (4)

EBK OPERATIONS MANAGEMENT, Chapter 10, Problem 20P , additional homework tip  2

A graph is plotted using the UCL and LCL and mean values which shows the points are within the control limits.

Range control chart:

R¯=i=14R4=0.3+0.4+0.2+0.44=0.325

Upper control limit:

UCL=D4R¯=2.11×0.325=0.686

The Upper control limit is calculated by multiplying 2.11 with 0.325 which yields 0.686.

Lower control limit:

LCL=D3R¯=0×0.325=0.0

The lower control limit is calculated by multiplying 0 with 0.325 which yields 0.0.

EBK OPERATIONS MANAGEMENT, Chapter 10, Problem 20P , additional homework tip  3

A graph is plotted using the UCL, LCL and Range values which shows that the points are within the control region.

Hence, all points are within control limits.

h)

Summary Introduction

To explain: The reason for variations in control limits.

h)

Expert Solution
Check Mark

Answer to Problem 20P

Use of different measures for dispersion to the measure the standard deviation and range.

Explanation of Solution

Reason for variations in control limits:

The control limits vary because in equation (3) and (4) because of the use of different measure for dispersion to measure the standard deviation and range.

Hence, the difference arises due to the use of different measures for dispersion to the measure the standard deviation and range.

i)

Summary Introduction

To determine: The control limits for the process and whether the process will be in control.

i)

Expert Solution
Check Mark

Answer to Problem 20P

The process is out of control with UCL=4.641 and LCL=4.159.

Explanation of Solution

Given information:

Mean=4.4Standarddeviation=0.18

Determination of control limits of the process:

Sample mean is given in Table 1.

=4.4±3(0.185)=4.4±0.241UCL=4.641LCL=4.159

To calculate the control limits 0.18 is divided by root of 5 and is multiplied by 3 and the resultant is added to 4.4 to give UCL which is 4.641 and subtracted from 4.4 to get the LCL which is 4.159.

EBK OPERATIONS MANAGEMENT, Chapter 10, Problem 20P , additional homework tip  4

The graph shows that the some of the points are above the control limits which make the process to be out of control.

Hence, the process is out of control with UCL=4.641 and LCL=4.159.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The Clothing Shack is an online retailer of men's, women's, and children's clothing. The company has been in business for four years and makes a modest profit from its online sales. However, in an effort to compete successfully against online retailing heavyweights, the Clothing Shack's marketing director, Makaya O'Neil, has determined that the Clothing Shack's marketing information systems need improvement. Ms. O'Neil feels that the Clothing Shack should begin sending out catalogs to its customers, keep better track of its customer's buying habits, perform target marketing, and provide a more personalized shopping experience for its customers. Several months ago, Ms. O'Neil submitted a systems service request (SSR) to the Clothing Shack's steering committee. The committee unanimously approved this project. You were assigned to the project at that time and have since helped your project team successfully complete the project initiation and planning phase. Your team is now ready to move…
b-1.   Activity ES EF LS LF Slack 1           2           3           4           5           6           7           8           9           b-2. Identify the critical activities, and determine the duration of the project. The critical activities are                 .
The forecast for each week of a four-week schedule is 50 units. The MPS rule is to schedule production if the projected on-hand Inventory would be negative without it. Customer orders (committed) are follows: Week Customer Order 1 52 35 20 12 Use a production lot size of 75 units and no beginning Inventory. Determine the available-to-promise (ATP) quantities for each period. Note: Leave no cells blank - be certain to enter "0" wherever required. Period ATP 1 2 3
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Text book image
MARKETING 2018
Marketing
ISBN:9780357033753
Author:Pride
Publisher:CENGAGE L