Concept explainers
a)
To determine: The mean of each sample.
a)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Sample | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Calculation of mean of each sample:
Sample | ||||
Sl. No. | 1 | 2 | 3 | 4 |
1 | 4.5 | 4.6 | 4.5 | 4.7 |
2 | 4.2 | 4.5 | 4.6 | 4.6 |
3 | 4.2 | 4.4 | 4.4 | 4.8 |
4 | 4.3 | 4.7 | 4.4 | 4.5 |
5 | 4.3 | 4.3 | 4.6 | 4.9 |
Mean | 4.3 | 4.5 | 4.5 | 4.7 |
Table 1
Excel Worksheet:
Sample 1:
The mean is calculated by adding each sample points. Adding the points 4.5, 4.2, 4.2, 4.3 and 4.3 and dividing by 5 gives mean of 4.3. The same process is followed for finding mean for other samples.
Hence, the mean of each sample is shown in Table 1
b)
To determine: The mean and standard deviation when the process parameters are unknown.
b)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Sample | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Calculation of mean and standard deviation:
Table 1 provides the mean for each sample points.
The mean is calculated by adding each mean of the samples. Adding the points 4.3, 4.5, 4.5 and 4.7 and dividing by 4 gives mean of 4.5.
The standard deviation is calculated using the above formula and substituting the values of mean in the above formula and the resultant of 0.192 is obtained.
Hence, the mean and standard deviation when the process parameters are unknown are 4.5 and 0.192.
c)
To determine: The mean and standard deviation of the sampling distribution.
c)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Sample | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Calculation of mean and standard deviation of the sampling distribution:
From calculation of mean of each samples, the mean for sampling distribution can be computed, the mean for sampling distribution is 4.5 (refer equation (1)).
The standard deviation of the sampling distribution is calculated by dividing 0.192 with the square root of 5 which gives the resultant as 0.086.
Hence, the mean and standard deviation of the sampling distribution is 4.5 and 0.086 respectively.
d)
To determine: The three-sigma control limit for the process and alpha risk provided by them.
d)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Sample | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Calculation of three-sigma control limit for the process:
The three-sigma control limits for the process is calculated by multiplying 3.00 with 0.086 (refer equation (2)) and the resultant is added with 4.5 to get an upper control limit which is 4.758 and subtracted to get lower control limit which is 4.242. Using z-factor table z = +3.00 corresponds to 0.4987.
The alpha risk is calculated to be as 0.0026.
Hence, the three-sigma control limits for the process are 4.758 and 4.242.
e)
To determine: The alpha risk for control limits of 4.14 and 4.86.
e)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Sample | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Formula:
Calculation alpha risk for control limits of 4.14 and 4.86:
The alpha risk is calculated by dividing the difference of 4.86 and 4.5 with 0.086 which gives +4.19 which is the risk is close to zero.
Hence, the alpha risk for control limits of 4.14 and 4.86 is +4.1
f)
To determine: Whether any of the sample means are beyond the control limits.
f)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Sample | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Determination of whether any of the sample means are beyond the control limits:
Table 1 provides the sample means for each sample. From observation, it can be found that each sample mean are within the control limit of 4.14 and 4.86. Therefore, each sample means lies within the control limits of 4.14 and 4.86.
Hence, there are no sample means which lies beyond the control limits.
g)
To determine: Whether any of the samples are beyond the control limits.
g)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
SAMPLE | |||
1 | 2 | 3 | 4 |
4.5 | 4.6 | 4.5 | 4.7 |
4.2 | 4.5 | 4.6 | 4.6 |
4.2 | 4.4 | 4.4 | 4.8 |
4.3 | 4.7 | 4.4 | 4.5 |
4.3 | 4.3 | 4.6 | 4.9 |
Formula:
Mean Chart:
Range Chart:
Calculation of upper and lower control limits:
SAMPLE | ||||
1 | 2 | 3 | 4 | |
4.5 | 4.6 | 4.5 | 4.7 | |
4.2 | 4.5 | 4.6 | 4.6 | |
4.2 | 4.4 | 4.4 | 4.8 | |
4.3 | 4.7 | 4.4 | 4.5 | |
4.3 | 4.3 | 4.6 | 4.9 | |
Mean | 4.3 | 4.5 | 4.5 | 4.7 |
Range | .3 | .4 | .2 | .4 |
From factors of three-sigma chart, A2 = 0.58; D3 = 0; D4 = 2.11.
Mean control chart:
Upper control limit:
The Upper control limit is calculated by adding the product of 0.58 and 0.325 with 4.5 which yields 4.689.
Lower control limit:
The Lower control limit is calculated by subtracting the product of 0.58 and 0.325 with 4.5 which yields 4.311.
The UCL and LCL for mean charts are 4.686 and 4.311. (4)
A graph is plotted using the UCL and LCL and mean values which shows the points are within the control limits.
Range control chart:
Upper control limit:
The Upper control limit is calculated by multiplying 2.11 with 0.325 which yields 0.686.
Lower control limit:
The lower control limit is calculated by multiplying 0 with 0.325 which yields 0.0.
A graph is plotted using the UCL, LCL and Range values which shows that the points are within the control region.
Hence, all points are within control limits.
h)
To explain: The reason for variations in control limits.
h)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Reason for variations in control limits:
The control limits vary because in equation (3) and (4) because of the use of different measure for dispersion to measure the standard deviation and range.
Hence, the difference arises due to the use of different measures for dispersion to the measure the standard deviation and range.
i)
To determine: The control limits for the process and whether the process will be in control.
i)
![Check Mark](/static/check-mark.png)
Answer to Problem 20P
Explanation of Solution
Given information:
Determination of control limits of the process:
Sample mean is given in Table 1.
To calculate the control limits 0.18 is divided by root of 5 and is multiplied by 3 and the resultant is added to 4.4 to give UCL which is 4.641 and subtracted from 4.4 to get the LCL which is 4.159.
The graph shows that the some of the points are above the control limits which make the process to be out of control.
Hence, the process is out of control with UCL=4.641 and LCL=4.159.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK OPERATIONS MANAGEMENT
- Prepare a master schedule given this information: The forecast for each week of an eight-week schedule is 60 units. The MPS rule is to schedule production if the projected on-hand Inventory would be negative without it. Customer orders (committed) are as follows: Week Customer Orders 1 2 36 28 4 1 Use a production lot size of 85 units and no beginning inventory. Note: In the ATP row, enter a value of 0 (zero) in any periods where ATP should not be calculated. Leave no cells blank - be certain to enter "0" wherever required. June July 1 2 3 4 5 8 7 8 Forecast 60 60 60 60 60 60 60 60 Customer Orders 38 28 4 1 0 0 0 0 Projected On-Hand Inventory MPS ATParrow_forwardSales of tablet computers at Marika Gonzalez's electronics store in Washington, D.C., over the past 10 weeks are shown in the table below: Week 1 2 3 4 5 6 7 8 9 10 Demand 21 21 27 38 25 30 35 24 25 30 a) The forecast for weeks 2 through 10 using exponential smoothing with a = 0.50 and a week 1 initial forecast of 21.0 are (round your responses to two decimal places): Week 1 2 3 4 5 6 7 8 9 10 Demand 21 21 27 38 25 30 35 24 25 30 Forecast 21.0 21 21 24 31 28 29 32 28 26.50 b) For the forecast developed using exponential smoothing (a = 0.50 and initial forecast 21.0), the MAD = |||||sales (round your response to two decimal places).arrow_forwardSales of tablet computers at Marika Gonzalez's electronics store in Washington, D.C., over the past 10 weeks are shown in the table below: Week Demand 1 2 3 4 5 6 7 8 9 10 21 21 27 38 25 30 35 24 25 30 a) The forecast for weeks 2 through 10 using exponential smoothing with a = 0.50 and a week 1 initial forecast of 21.0 are (round your responses to two decimal places): Week 1 2 3 4 5 Demand 21 21 27 38 Forecast 21.0 ☐ G ☐ ☐ 6 7 25 30 35 ∞ ☐ 8 9 10 24 25 30arrow_forward
- Each machine costs $3 Million. Building the room with all its attendant safety protection and other ancillary costs increases the spending by an additional $2.0 million dollars per MRI suite. Each machine can perform 2000 scans per year. Each reading of an MRI scan by a radiologist, along with other per-scan-related costs, is $500 per scan. The machine will last five years. Don’t worry about discount rates for this problem Graph the total costs over 5 years as a function of sales for 0-3000 patients annually. Hint: you may need to add a second MRI at some point. Suppose that you want to make a profit of $500 per scan at a target volume of 1000 patients per year, and you purchase only one machine. Superimpose the total revenue curve on top of the total cost curve in (1).arrow_forwardI need the answer to requirement C.arrow_forwardImagine you are Susan Kim and are faced with a difficult choice to either follow the orders she was given, or refusing to do so. Using each lens determine what the ethical response would be. Suppot your answer with materials from readings and lectures. For example, using Universalism what would the ethical response be? Do the same for all four lenses.arrow_forward
- Answer all these questions, selecting any company of your choice. Choose a specific type of food company. Select a specific product. Develop all the inputs that are part of the process. Develop the transformation process in a graphic (diagram, etc.). Develop all the outputs or finished products that are part of the process. Describe all the processes involved in one line of production in any manufacturing facility. Also describing how good management is the center of any part of a production company.arrow_forwardUsing exponential smoothing with α =0.2, forecast the demand for The initial forecast for January is 2000 tons. Calculate the capacity utilization for June, July and Discuss the implications of underutilized or over utilized capacity for Green Harvestarrow_forwardIn organizational development when results are improving but relationships are declining, what leadership style is appropriate? directing delegating supporting coachingarrow_forward
- What is the first thing a leader should do when moving through a cultural change? conduct an assessment comparing the practices to other high-performing organizations learn about the current organizational culture continue to monitor key metrics define expectationsarrow_forwardThe third change leadership strategy, Collaborate on Implementation, is designed to address what type of concerns? impact concerns personal concerns refinement concerns collaboration concernsarrow_forwardIf team members are concerned with specifics such as their tasks, contingency plans, resources, and timeline, what concerns do they have? implementation concerns impact concerns refinement concerns personal concernsarrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337406659/9781337406659_smallCoverImage.gif)