a)
Explanation of Solution
Number of
The number of database request based on the SQL query of the transaction.
- If the user gives the query to add the product “ABC” by “1”, reducing each parts “A”, “B”, and “C” individually means, the number transaction request will be “4”.
- If the user add the product “ABC” by “1”, reducing each parts “A”, “B”, and “C” in a single statement using “OR” condition means, the number transaction request will be “2”.
b)
Explanation of Solution
SQL statement for each database requests that identified in “Step a”:
Four SQL statements:
SQL Query:
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 1
WHERE PROD_CODE = ‘ABC’
Explanation:
The above SQL query is to update the “PROD_QOH” field using “UPDATE” statement that adds the new product by “1” to “PRODUCT” table where the product code is “ABC”.
SQL Query:
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘A’
Explanation:
The above SQL query is to update the “PART_QOH” field using “UPDATE” statement to reduce the parts inventory by “1” from “PART” table where the product code is “A”.
SQL Query:
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘B’
Explanation:
The above SQL query is to update the “PART_QOH” field using “UPDATE” statement to reduce the quantity by “1” from “PART” table where the product code is “B”.
SQL Query:
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘C’
Explanation:
The above SQL query is to update the “PART_QOH” field using “UPDATE” statement to reduce the parts inventory by “1” from “PART” table where the product code is “C”.
Two SQL statements:
The following SQL UPDATE statement to add the new product by “1” to “PRODUCT” table where the product code is specified as “ABC”.
SQL Query:
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 1
WHERE PROD_CODE = ‘ABC’
Explanation:
The above SQL query is to update the “PROD_QOH” field using “UPDATE” statement to reduce the parts inventory by “1” from “PRODUCT” table where the product code is “ABC”.
SQL Query:
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘A’ OR PART_CODE= ‘B’ OR PART_CODE= ‘C’
Explanation:
The above SQL query is to update the “PART_QOH” field using “UPDATE” statement to reduce the parts inventory by “1” from “PART” table where the product code is either “A” or “B” or “C”.
c)
Explanation of Solution
Complete SQL transaction statements:
Four SQL statements:
BEGIN TRANSACTION
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 1
WHERE PROD_CODE = ‘ABC’
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘A’
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘B’
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘C’
COMMIT;
Explanation:
The above SQL transaction is to update the tables “PRODUCT” and “PART” by adding and removing the value “1” from “PART_QOH” and “PROD_QOH” field.
- Add the value of “PROD_QOH” field by “1” where “PROD_CODE” is “ABC”.
- Reduce the value by “1” from “PART_QOH” field in “PART” table where the “PART_CODE” either “A”, “B”, or “C”.
Two SQL statements:
BEGIN TRANSACTION
UPDATE PRODUCT
SET PROD_QOH = PROD_QOH + 1
WHERE PROD_CODE = ‘ABC’
UPDATE PART
SET PART_QOH = PART_QOH - 1
WHERE PART_CODE = ‘A’ OR
PART_CODE = ‘B’ OR
PART_CODE = ‘C’
COMMIT;
Explanation:
The above SQL transaction is to update the tables “PRODUCT” and “PART” by adding and removing the value “1” from “PART_QOH” and “PROD_QOH” field.
- Add the value of “PROD_QOH” field by “1” where “PROD_CODE” is “ABC”.
- Reduce the value by “1” from “PART_QOH” field in “PART” table where the “PART_CODE” either “A”, “B”, or “C”.
d)
Transaction log:
It is a feature used by the DBMS software to keep track all of the information that contains a description of all database transactions executed by the DBMS. This transaction plays the major role for database maintenance.
d)
Explanation of Solution
Transaction log for the transaction that was mentioned in subpart “c”:
The product of the ‘ABC’ has a PROD_QOH = 1,205 at beginning of the transaction and that the transaction is specified the addition of one new product.
The PART components “A”, “B” and “C” have a PROD_QOH equal to 567, 98, and 549 respectively.
Trans_ ID |
Trans_ NUM |
Prev_ptr | Next_ptr |
Operation |
Table |
Value_ID |
Attribute |
Before_ trans |
After_ trans |
1 | T1 | NULL | 2 | START | **START TRANSACTION | ||||
2 | T1 | 1 | 3 | UPDATE | PRODUCT | ‘ABC’ | PROD_QOH | 1025 | 1026 |
3 | T1 | 2 | 4 | UPDATE | PART | ‘A’ | PART_QOH | 567 | 566 |
4 | T1 | 3 | 5 | UPDATE | PART | ‘B’ | PART_QOH | 98 | 97 |
5 | T1 | 4 | 6 | UPDATE | PART | ‘C’ | PART_QOH | 549 | 548 |
6 | T1 | 5 | NULL | COMMIT |
** END TRANSACTION |
e)
Explanation of Solution
Trace out of transaction log mentioned in sub part “d”:
The above transaction log has transaction ID(Trans_ID), transaction number(Trans_NUM), and other fields used to recover the transaction.
The trace out of transaction log from beginning of the transaction is as follows:
Trans_ID 1: Beginning of the transaction.
Trans_ID 2: Update the table “PRODUCT” by adding the attribute value from “1025” to “1026”.
Trans_ID 3: Update the table “PART” by removing the attribute value from “567” to “566”.
Trans_ID 4: Update the table “PART” by removing the attribute value from “98” to “97”.
Trans_ID 5: Update the table “PART” by removing the attribute value from “549” to “548”.
Trans_ID 6: End of the transaction.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK DATABASE SYSTEMS: DESIGN, IMPLEMENT
- what type of internet connection should be avoided on mobile devices?arrow_forwardI need help creating the network diagram and then revising it for the modified activity times.arrow_forwardActivity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.arrow_forward
- Given the following Extended-BNF grammar of the basic mathematical expressions: Show the derivation steps for the expression: ( 2 + 3 ) * 6 – 20 / ( 3 + 1 ) Draw the parsing tree of this expression. SEE IMAGEarrow_forwardWhentheuserenters!!,themostrecentcommandinthehistoryisexecuted.In the example above, if the user entered the command: Osh> !! The ‘ls -l’ command should be executed and echoed on user’s screen. The command should also be placed in the history buffer as the next command. Whentheuserentersasingle!followedbyanintegerN,theNthcommandin the history is executed. In the example above, if the user entered the command: Osh> ! 3 The ‘ps’ command should be executed and echoed on the user’s screen. The command should also be placed in the history buffer as the next command. Error handling: The program should also manage basic error handling. For example, if there are no commands in the history, entering !! should result in a message “No commands in history.” Also, if there is no command corresponding to the number entered with the single !, the program should output "No such command in history."arrow_forwardActivity No. Activity Time (weeks) Immediate Predecessors 1 Requirements collection 3 2 Requirements structuring 4 1 3 Process analysis 3 2 4 Data analysis 3 2 5 Logical design 50 3,4 6 Physical design 5 5 7 Implementation 6 6 c. Using the information from part b, prepare a network diagram. Identify the critical path.arrow_forward
- 2. UNIX Shell and History Feature [20 points] This question consists of designing a C program to serve as a shell interface that accepts user commands and then executes each command in a separate process. A shell interface gives the user a prompt, after which the next command is entered. The example below illustrates the prompt osh> and the user's next command: cat prog.c. The UNIX/Linux cat command displays the contents of the file prog.c on the terminal using the UNIX/Linux cat command and your program needs to do the same. osh> cat prog.c The above can be achieved by running your shell interface as a parent process. Every time a command is entered, you create a child process by using fork(), which then executes the user's command using one of the system calls in the exec() family (as described in Chapter 3). A C program that provides the general operations of a command-line shell can be seen below. #include #include #define MAX LINE 80 /* The maximum length command */ { int…arrow_forwardQuestion#2: Design and implement a Java program using Abstract Factory and Singleton design patterns. The program displays date and time in one of the following two formats: Format 1: Date: MM/DD/YYYY Time: HH:MM:SS Format 2: Date: DD-MM-YYYY Time: SS,MM,HH The following is how the program works. In the beginning, the program asks the user what display format that she wants. Then the program continuously asks the user to give one of the following commands, and performs the corresponding task. Note that the program gets the current date and time from the system clock (use the appropriate Java date and time operations for this). 'd' display current date 't': display current time 'q': quit the program. • In the program, there should be 2 product hierarchies: "DateObject” and “TimeObject”. Each hierarchy should have format and format2 described above. • Implement the factories as singletons. • Run your code and attach screenshots of the results. • Draw a UML class diagram for the program.arrow_forward#include <linux/module.h> #include <linux/kernel.h> // part 2 #include <linux/sched.h> // part 2 extra #include <linux/hash.h> #include <linux/gcd.h> #include <asm/param.h> #include <linux/jiffies.h> void print_init_PCB(void) { printk(KERN_INFO "init_task pid:%d\n", init_task.pid); printk(KERN_INFO "init_task state:%lu\n", init_task.state); printk(KERN_INFO "init_task flags:%d\n", init_task.flags); printk(KERN_INFO "init_task runtime priority:%d\n", init_task.rt_priority); printk(KERN_INFO "init_task process policy:%d\n", init_task.policy); printk(KERN_INFO "init_task task group id:%d\n", init_task.tgid); } /* This function is called when the module is loaded. */ int simple_init(void) { printk(KERN_INFO "Loading Module\n"); print_init_PCB(); printk(KERN_INFO "Golden Ration Prime = %lu\n", GOLDEN_RATIO_PRIME); printk(KERN_INFO "HZ = %d\n", HZ); printk(KERN_INFO "enter jiffies = %lu\n", jiffies); return 0; } /* This function is called when the…arrow_forward
- Database Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781285196145Author:Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos CoronelPublisher:Cengage LearningA Guide to SQLComputer ScienceISBN:9781111527273Author:Philip J. PrattPublisher:Course Technology PtrDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781305627482Author:Carlos Coronel, Steven MorrisPublisher:Cengage Learning
- Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningPrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781305971776Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning