
Concept explainers
(a)
Interpretation:
The expansion of gas should be shown as spontaneous when the external pressure is suddenly changes to 2.0 atm.
Concept Introduction:
The mathematical expression for entropy change in system is:
Where, n = number of moles
R = universal gas constant
V1 and V2 = initial and final volume
Ideal gas equation is:
Where, P = pressure
V = volume
n = number of moles
R = Universal gas constant
T = temperature
(a)

Answer to Problem 136CP
The process is spontaneous as entropy change of the universe is greater than zero.
Explanation of Solution
Number of moles of monoatomic ideal gas = 1.0 mole
Initial volume = 5.0 L
Initial pressure = 5.0 atm
Final pressure = 2.0 atm
From ideal gas equation,
Rearrange the above equation in terms of temperature,
Put the values,
The final volume is calculated as:
Put the values,
=
The entropy change is calculated as:
Put the values,
Now,
Since, the change in internal energy of an isothermal process is zero, thus heat is equal to negative of work done.
Put the values,
Entropy change for surrounding is calculated as:
Put the values,
The entropy change of universe is calculated as:
Thus, from above value it is clear that the process is spontaneous as entropy change of the universe is greater than zero.
(b)
Interpretation:
The compression of gas should be shown as spontaneous when the external pressure is suddenly changes back to 5.0 atm.
Concept Introduction:
The mathematical expression for entropy change in system is:
Where, n = number of moles
R = universal gas constant
V1 and V2 = initial and final volume
Ideal gas equation is:
Where, P = pressure
V = volume
n = number of moles
R = Universal gas constant
T = temperature
(b)

Answer to Problem 136CP
The process is spontaneous as entropy change of the universe is greater than zero.
Explanation of Solution
Number of moles of monoatomic ideal gas = 1.0 mole
Initial volume = 12.0 L
Final Volume = 12.0 L
From ideal gas equation,
Rearrange the above equation in terms of temperature,
Put the values,
The initial volume is calculated as:
Put the values,
=
The entropy change is calculated as:
Put the values,
Now,
Since, the change in internal energy of an isothermal process is zero, thus heat is equal to negative of work done.
Put the values,
Entropy change for surrounding is calculated as:
Put the values,
The entropy change of universe is calculated as:
Thus, from above value it is clear that the process is spontaneous as entropy change of the universe is greater than zero.
(c)
Interpretation:
The value of should be calculated along with its sign comparison for part (a) and (b) and also, the reason should be discussed for not using this sign to predict spontaneity.
Concept Introduction:
The mathematical expression for Gibbs free energy change is:
Where,
T = temperature
(c)

Explanation of Solution
For isothermal process, change in enthalpy is equal to zero.
Since, both of the process is isothermal, thus the enthalpy change is equal to zero,
Thus, expression of Gibbs free energy is shown as:
For part (a) that is expansion process:
Put the values,
In kJ,
For part (b) that is compression process:
Put the values,
In kJ,
Now, according to the value of changes in entropy in both parts shows that the process is spontaneous as entropy change is greater than zero but the sign of change in Gibbs free energy is different for both parts. This is because change in Gibbs free energy depends on the sign of entropy change of the system only. Therefore, the sign of change in Gibbs free energy cannot be used for prediction of spontaneity.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMICAL PRINCIPLES
- CUE COLUMN NOTES (A. Determine Stereoisomers it has ⑤ Identify any meso B compounds cl Br cl -c-c-c-c-¿- 1 CI C- | 2,4-Dichloro-3-bromopentanearrow_forwardThe acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBTarrow_forwardWhat does the phrase 'fit for purpose' mean in relation to analytical chemistry? Please provide examples too.arrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects Resonance Effects Overall Electron-Density × NO2 ○ donating O donating O withdrawing O withdrawing O electron-rich electron-deficient no inductive effects O no resonance effects O similar to benzene E [ CI O donating withdrawing O no inductive effects Explanation Check ○ donating withdrawing no resonance effects electron-rich electron-deficient O similar to benzene © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accesarrow_forwardUnderstanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- * Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forwardDraw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





