
Concept explainers
Anthraquinone contains only carbon, hydrogen, and oxygen. When 4.80 mg anthraquinone is burned, 14.2 mg CO2 and 1.65 mg H2O are produced. The freezing point of camphor is lowered by 22.3°C when 1.32 g anthraquinone is dissolved in 11.4 g camphor. Determine the empirical and molecular formulas of anthraquinone.

Interpretation: The empirical formula and molecular formula of Anthraquinone has to be determined.
Concept Introduction:
The ratio of the elements present in a compound and not the arrangement of the atoms are called as Empirical formula
Molecular formula is the representation of sum of number of atoms and molecules, not their arrangement in structure.
Answer to Problem 132IP
The empirical formula of Anthraquinone is
The molecular formula of Anthraquinone is
Explanation of Solution
Record the data
Mass of Carbon dioxide =
Mass of Water =
Freezing point of Camphor =
Mass of Anthraquinone burned =
Mass of Anthraquinone Dissolved =
Mass of Camphor =
To calculate the mass percent of Carbon, Hydrogen and Oxygen
Atomic mass of Carbon =
Molar mass of Carbon dioxide =
Atomic mass of Hydrogen =
Molar mass of Water =
Mass of Carbon =
Mass percentage of Carbon =
=
Mass of Hydrogen =
Mass percentage of Hydrogen =
=
Mass percentage of Oxygen =
=
Mass percentage of Carbon =
Mass percentage of Water =
Mass percentage of Oxygen =
To calculate the empirical formula
Mass percentage of Carbon =
Mass percentage of Hydrogen =
Mass percentage of Oxygen =
Out of
Therefore, the empirical formula is
Record the given info
Freezing point of Camphor =
Molal freezing point depression constant =
Mass of Anthraquinone burned =
Mass of Anthraquinone Dissolved =
Mass of Camphor =
To calculate the mass of Anthraquinone (m),
Molal of Anthraquinone =
Moles of Anthraquinone =
=
Moles of Anthraquinone =
To calculate the molar mass
Moles of Anthraquinone =
Mass of Anthraquinone Dissolved =
Molar mass of Anthraquinone =
=
To determine the Molecular formula of Anthraquinone
Empirical formula mass =
Molar mass of Anthraquinone =
Molar mass of Anthraquinone is twice the empirical mass of Anthraquinone, therefore the molecular mass of Anthraquinone is
Molecular Mass of Anthraquinone =
The moles of individual elements were calculated by using the mass percentages to their molar masses. The moles of the individual elements were divided by smallest ratio of moles and approximated to determine the empirical formula. The empirical formula was found to be
The molecular mass of Anthraquinone is calculated by using the molar mass and empirical formula mass. The molecular mass of Anthraquinone was
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- b. CH3 H3C 'N' H3C CH3 CN Ph 1. OH N 2. H2O2, Pyridinearrow_forwardFor each of the Followin, moleaks draw all OF The Resonance contributing stuluctures and compare these three molecules in terms of Resonance stabilization 1-C-1 a. b. H A-C+ О 112-1 C. F-C-F Farrow_forwarda. Explain Why electron withdrawing groupe tend to be meta-Directors. Your answer Should lyclude all apropriate. Resonance contributing Structures 6. Explain why -ll is an ortho -pura drccton evon though chlorine has a very High Electronegativityarrow_forward
- Question 1. Please predict the products for each of the following reactions. Clearly show the regiochemistry (Markovnikov vs anti-Markovnikov) and stereochemistry (syn- vs anti- or both). If a mixture of enantiomers is formed, please draw all the enantiomers.arrow_forwardElectrochemistry. Briefly describe the Donnan potential.arrow_forwardIndicate what the Luther equation is used for?arrow_forward
- Indicate one aspect that benefits and another that makes it difficult to use the hydroquinone electrode to measure pH.arrow_forwardAt an electrified interface according to the Gouy-Chapman model, what types of interactions do NOT occur between the ions and the solvent according to this theory?arrow_forwardPlease predict the products for each of the following reactions. Clearly show the regiochemistry (Markovnikov vs anti-Markovnikov) and stereochemistry (syn- vs anti- or both). If a mixture of enantiomers is formed, please draw all the enantiomers. Hint: In this case you must choose the best answer to demonstrate the stereochemistry of H2 addition. 1.03 2. (CH3)2S BIZ CH₂OH 2. DMS KMnO4, NaOH ΖΗ Pd or Pt (catalyst) HBr 20 1 HBr ROOR (peroxide) HO H-SO HC 12 11 10 BH, THE 2. H2O2, NaOH Brz cold HI 19 18 17 16 MCPBA 15 14 13 A Br H₂O BH3⚫THF Brz EtOH Pd or Ni (catalyst) D₂ (deuterium) 1. Os04 2. H2O2 CH3CO3H (peroxyacid) 1. MCPBA 2. H₂O* H B + H H H "H C H H Darrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




