
Concept explainers
Anthraquinone contains only carbon, hydrogen, and oxygen. When 4.80 mg anthraquinone is burned, 14.2 mg CO2 and 1.65 mg H2O are produced. The freezing point of camphor is lowered by 22.3°C when 1.32 g anthraquinone is dissolved in 11.4 g camphor. Determine the empirical and molecular formulas of anthraquinone.

Interpretation: The empirical formula and molecular formula of Anthraquinone has to be determined.
Concept Introduction:
The ratio of the elements present in a compound and not the arrangement of the atoms are called as Empirical formula
Molecular formula is the representation of sum of number of atoms and molecules, not their arrangement in structure.
Answer to Problem 132IP
The empirical formula of Anthraquinone is
The molecular formula of Anthraquinone is
Explanation of Solution
Record the data
Mass of Carbon dioxide =
Mass of Water =
Freezing point of Camphor =
Mass of Anthraquinone burned =
Mass of Anthraquinone Dissolved =
Mass of Camphor =
To calculate the mass percent of Carbon, Hydrogen and Oxygen
Atomic mass of Carbon =
Molar mass of Carbon dioxide =
Atomic mass of Hydrogen =
Molar mass of Water =
Mass of Carbon =
Mass percentage of Carbon =
=
Mass of Hydrogen =
Mass percentage of Hydrogen =
=
Mass percentage of Oxygen =
=
Mass percentage of Carbon =
Mass percentage of Water =
Mass percentage of Oxygen =
To calculate the empirical formula
Mass percentage of Carbon =
Mass percentage of Hydrogen =
Mass percentage of Oxygen =
Out of
Therefore, the empirical formula is
Record the given info
Freezing point of Camphor =
Molal freezing point depression constant =
Mass of Anthraquinone burned =
Mass of Anthraquinone Dissolved =
Mass of Camphor =
To calculate the mass of Anthraquinone (m),
Molal of Anthraquinone =
Moles of Anthraquinone =
=
Moles of Anthraquinone =
To calculate the molar mass
Moles of Anthraquinone =
Mass of Anthraquinone Dissolved =
Molar mass of Anthraquinone =
=
To determine the Molecular formula of Anthraquinone
Empirical formula mass =
Molar mass of Anthraquinone =
Molar mass of Anthraquinone is twice the empirical mass of Anthraquinone, therefore the molecular mass of Anthraquinone is
Molecular Mass of Anthraquinone =
The moles of individual elements were calculated by using the mass percentages to their molar masses. The moles of the individual elements were divided by smallest ratio of moles and approximated to determine the empirical formula. The empirical formula was found to be
The molecular mass of Anthraquinone is calculated by using the molar mass and empirical formula mass. The molecular mass of Anthraquinone was
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- There is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS). Ca, ppm V, ppm SCa, arb. units SV, arb. units 20.0 10.0 14375.11 14261.02 40.0 10.0 36182.15 17997.10 60.0 10.0 39275.74 12988.01 80.0 10.0 57530.75 14268.54 100.0…arrow_forwardA mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C. H₂O(g) + C₁₂O(g) = 2 HOCl(g) K = 0.0900 at 25°C с Calculate the equilibrium concentrations of each gas at 25 °C. [H₂O]= [C₁₂O]= [HOCI]= M Σ Marrow_forwardWhat units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?arrow_forward
- Provide the structure, circle or draw, of the monomeric unit found in the biological polymeric materials given below. HO OH amylose OH OH 행 3 HO cellulose OH OH OH Ho HOarrow_forwardWhat units (if any) does K have? Does K depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)? in calculating the response factorarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used Ai solution and don't used hand raitingarrow_forwardOA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forwardDon't used hand raitingarrow_forward
- Quizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




