
Concept explainers
Interpretation: The amount of reagents required and range of osmotic pressure has to be calculated.
Concept Introduction: The mass of the compound is calculated by taking the products of molar mass of the compound to the given mass. The mass of compound can be given by,
Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.
The osmotic pressure can be given by the equation,

Answer to Problem 108AE
The range of osmotic pressure is
Explanation of Solution
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the mass of individual elements
Molar mass of Sodium lactate =
Molar mass of Lactate =
Molar mass of
Molecular mass of Calcium =
Molar mass of
Molecular weight of Potassium =
Molar mass of
Molecular mass of Sodium=
The average values for each ion are,
The source of Lactate is
Mass of Lactate =
The source of
Mass of
The source of
Mass of
Mass of
Additional amount of Sodium
Mass of Sodium added =
Mass of
Total
Therefore,
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the minimum and maximum concentrations of ions
Molar mass of Lactate =
Molecular mass of Calcium =
Molecular weight of Potassium =
Molecular mass of Sodium=
At minimum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration =
=
At maximum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration=
=
The total concentration of ions for minimum and maximum concentration is calculated by using the summing the molarities of individual ions. The molarities of individual ions are calculated using the minimum and maximum moles to their molecular masses. The total concentrations at minimum and maximum concentrations are
To calculate the osmotic pressure at minimum and maximum concentration
At minimum concentration,
At maximum concentration,
At minimum concentration, osmotic pressure=
At maximum concentration, osmotic pressure=
The mass of individual elements was calculated using their respective molar mass and molecular weight and the given weight. A typical analytical balance can nearly measure to
The osmotic pressure at minimum and maximum concentrations was calculated using the molarities at minimum and maximum concentration. The osmotic pressure at minimum and maximum concentrations were
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
- Question 4 Determine the rate order and rate constant for sucrose hydrolysis. Time (hours) [C6H12O6] 0 0.501 0.500 0.451 1.00 0.404 1.50 0.363 3.00 0.267 First-order, k = 0.210 hour 1 First-order, k = 0.0912 hour 1 O Second-order, k = 0.590 M1 hour 1 O Zero-order, k = 0.0770 M/hour O Zero-order, k = 0.4896 M/hour O Second-order, k = 1.93 M-1-hour 1 10 ptsarrow_forwardDetermine the rate order and rate constant for sucrose hydrolysis. Time (hours) [C6H12O6] 0 0.501 0.500 0.451 1.00 0.404 1.50 0.363 3.00 0.267arrow_forwardDraw the products of the reaction shown below. Use wedge and dash bonds to indicate stereochemistry. Ignore inorganic byproducts. OSO4 (cat) (CH3)3COOH Select to Draw ઘarrow_forward
- Calculate the reaction rate for selenious acid, H2SeO3, if 0.1150 M I-1 decreases to 0.0770 M in 12.0 minutes. H2SeO3(aq) + 6I-1(aq) + 4H+1(aq) ⟶ Se(s) + 2I3-1(aq) + 3H2O(l)arrow_forwardProblem 5-31 Which of the following objects are chiral? (a) A basketball (d) A golf club (b) A fork (c) A wine glass (e) A spiral staircase (f) A snowflake Problem 5-32 Which of the following compounds are chiral? Draw them, and label the chirality centers. (a) 2,4-Dimethylheptane (b) 5-Ethyl-3,3-dimethylheptane (c) cis-1,4-Dichlorocyclohexane Problem 5-33 Draw chiral molecules that meet the following descriptions: (a) A chloroalkane, C5H11Cl (c) An alkene, C6H12 (b) An alcohol, C6H140 (d) An alkane, C8H18 Problem 5-36 Erythronolide B is the biological precursor of erythromycin, a broad-spectrum antibiotic. How H3C CH3 many chirality centers does erythronolide B have? OH Identify them. H3C -CH3 OH Erythronolide B H3C. H3C. OH OH CH3arrow_forwardPLEASE HELP! URGENT! PLEASE RESPOND!arrow_forward
- 2. Propose a mechanism for this reaction. ہلی سے ملی N H (excess)arrow_forwardSteps and explanationn please.arrow_forwardProblem 5-48 Assign R or S configurations to the chirality centers in ascorbic acid (vitamin C). OH H OH HO CH2OH Ascorbic acid O H Problem 5-49 Assign R or S stereochemistry to the chirality centers in the following Newman projections: H Cl H CH3 H3C. OH H3C (a) H H H3C (b) CH3 H Problem 5-52 Draw the meso form of each of the following molecules, and indicate the plane of symmetry in each: OH OH (a) CH3CHCH2CH2CHCH3 CH3 H3C. -OH (c) H3C CH3 (b) Problem 5-66 Assign R or S configurations to the chiral centers in cephalexin, trade-named Keflex, the most widely prescribed antibiotic in the United States. H2N H IHH S Cephalexin N. CH3 CO₂Harrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





