For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. x 2 + y 2 − 4 x − 6 y + 1 = 0
For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. x 2 + y 2 − 4 x − 6 y + 1 = 0
Solution Summary: The author explains the nature of the curve x2+y 2-4x-6y+1=0 among the types: circle, ellipse, hyperbola, or parabol
a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola.
b. Graph the curve.
c. Identify key features of the graph. That is,
If the equation represents a circle, identify the center and radius.
If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity.
If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity.
If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry.
Write the given third order linear equation as an equivalent system of first order equations with initial values.
Use
Y1 = Y, Y2 = y', and y3 = y".
-
-
√ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t²
\y(3) = 1, y′(3) = −2, y″(3) = −3
(8) - (888) -
with initial values
Y
=
If you don't get this in 3 tries, you can get a hint.
Question 2
1 pts
Let A be the value of the triple integral
SSS.
(x³ y² z) dV where D is the region
D
bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0.
Then the value of sin(3A) is
-0.003
0.496
-0.408
-0.420
0.384
-0.162
0.367
0.364
Question 1
Let A be the value of the triple integral SSS₂ (x + 22)
=
1 pts
dV where D is the
region in
0, y = 2, y = 2x, z = 0, and
the first octant bounded by the planes x
z = 1 + 2x + y. Then the value of cos(A/4) is
-0.411
0.709
0.067
-0.841
0.578
-0.913
-0.908
-0.120
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.