For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. x − 2 2 16 + y = 0
For Exercises 9-16, a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola. b. Graph the curve. c. Identify key features of the graph. That is, If the equation represents a circle, identify the center and radius. If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity. If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity. If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry. x − 2 2 16 + y = 0
Solution Summary: The author explains the nature of the curve (x-2)216+y=0 among the types: a circle, ellipse, hyperbola,
a. Identify the equation as representing a circle, an ellipse, a hyperbola, or a parabola.
b. Graph the curve.
c. Identify key features of the graph. That is,
If the equation represents a circle, identify the center and radius.
If the equation represents an ellipse, identify the center, vertices, endpoints of the minor axis, foci, and eccentricity.
If the equation represents a hyperbola, identify the center, vertices, foci, equations of the asymptotes, and eccentricity.
If the equation represents a parabola, identify the vertex, focus, endpoints of the latus rectum, equation of the directrix, and equation of the axis of symmetry.
A factorization A = PDP 1 is not unique. For A=
7 2
-4 1
1
1
5 0
2
1
one factorization is P =
D=
and P-1
30
=
Use this information with D₁
=
to find a matrix P₁ such that
-
-1 -2
0 3
1
-
- 1
05
A-P,D,P
P1
(Type an integer or simplified fraction for each matrix element.)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.