The fraction of moles of NaCl existing as ion pairs and the freezing point of the solution has to be calculated. Concept Introduction: Mole fraction of a compound can be defined as the number of moles of a substance to the total number of moles present in them. The mole fraction can be calculated by, Mole fraction of compound= Number of moles(in mol) Total number of moles(in mol) Freezing point of solution can be calculated from the equation, ΔT f =K f m ΔT f = change in freezing point K f = molal depression freezing point constant m = moles of solute particles
The fraction of moles of NaCl existing as ion pairs and the freezing point of the solution has to be calculated. Concept Introduction: Mole fraction of a compound can be defined as the number of moles of a substance to the total number of moles present in them. The mole fraction can be calculated by, Mole fraction of compound= Number of moles(in mol) Total number of moles(in mol) Freezing point of solution can be calculated from the equation, ΔT f =K f m ΔT f = change in freezing point K f = molal depression freezing point constant m = moles of solute particles
Solution Summary: The author explains the mole tion of NaCl as ion pairs and the freezing point of the solution.
The fraction of moles of
NaCl existing as ion pairs and the freezing point of the solution has to be calculated.
Concept Introduction:
Mole fraction of a compound can be defined as the number of moles of a substance to the total number of moles present in them. The mole fraction can be calculated by,
b) Certain cyclic compounds are known to be conformationally similar to carbohydrates, although they are not
themselves carbohydrates. One example is Compound C shown below, which could be imagined as adopting
four possible conformations. In reality, however, only one of these is particularly stable. Circle the conformation
you expect to be the most stable, and provide an explanation to justify your choice. For your explanation to be
both convincing and correct, it must contain not only words, but also "cartoon" orbital drawings contrasting the
four structures.
Compound C
Possible conformations (circle one):
Дет
Lab Data
The distance entered is out of the expected range.
Check your calculations and conversion factors.
Verify your distance. Will the gas cloud be closer to the cotton ball with HCI or NH3?
Did you report your data to the correct number of significant figures?
- X
Experimental Set-up
HCI-NH3
NH3-HCI
Longer Tube
Time elapsed (min)
5 (exact)
5 (exact)
Distance between cotton balls (cm)
24.30
24.40
Distance to cloud (cm)
9.70
14.16
Distance traveled by HCI (cm)
9.70
9.80
Distance traveled by NH3 (cm)
14.60
14.50
Diffusion rate of HCI (cm/hr)
116
118
Diffusion rate of NH3 (cm/hr)
175.2
175.2
How to measure distance and calculate rate
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically:
1:1 (one mole of EDTA per mole of metal ion)
2:1 (two moles of EDTA per mole of metal ion)
1:2 (one mole of EDTA per two moles of metal ion)
None of the above
Chapter 10 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card