The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s) t + (42.5rad/s 2 ) t 2 . (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s) t + (42.5rad/s 2 ) t 2 . (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
The angle an airplane propeller makes with the horizontal as a function of time is given by θ = (125rad/s)t + (42.5rad/s2)t2. (a) Estimate the instantaneous angular velocity at t = 0.00 by calculating the average angular velocity from t = 0.00 to t = 0.010s. (b) Estimate the instantaneous angular velocity at t = 1.000 s by calculating the average angular velocity from t = 1.000 s to t = 1.010 s. (c) Estimate the instantaneous angular velocity at t = 2.000 s by calculating the average angular velocity from t = 2.000s to t = 2.010s. (d) Based on your results from parts (a), (b), and (c), is the angular acceleration of the propeller positive, negative or zero? Explain, (e) Calculate the average angular acceleration from t = 0.00 to t = 1.00s and from t = 1.00s to t = 2.00 s.
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.