EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 23PCE
Predict/Explain Two children. Jason and Betsy ride on the same merry-go-round. Jason is a distance R from the axis of rotation; Betsy is a distance 2R from the axis (a) is the rotational period of Jason greater than, less than, or equal to the rotational period of Betsy? (b) Choose the best explanation from among the following.
- I. The period is greater for Jason because he moves more slowly than Betsy
- II.The period is greater for Betsy since she must go around a circle with a larger circumference.
- III. It takes the same amount of time for the merry-go-round to complete a revolution for all points on the merry-go-round.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
EBK PHYSICS
Ch. 10.1 - Rank the following systems (A, B, C, D) in order...Ch. 10.2 - An object at rest begins to rotate at t = 0 with...Ch. 10.3 - Disk 1 has a radius r and rotates with an angular...Ch. 10.4 - In a popular pirate movie, two pirates find...Ch. 10.5 - Four masses m are connected by rods of negligible...Ch. 10.6 - A hoop, a disk, a solid sphere, and a hollow...Ch. 10 - A rigid object rotates about a fixed axis. Do all...Ch. 10 - Can you drive your car in such a way that your...Ch. 10 - Can you drive your car in such a way that your...Ch. 10 - The fact that the Earth rotates gives people in...
Ch. 10 - At the local carnival you and a friend decide to...Ch. 10 - Why should changing the axis of rotation of an...Ch. 10 - Give a common, everyday example for each of the...Ch. 10 - Two spheres have identical radii and masses How...Ch. 10 - At the grocery store you pick up a can of beef...Ch. 10 - Suppose we change the race shown in Conceptual...Ch. 10 - The following angles are given in degrees. Convert...Ch. 10 - The following angles are given in radians. Convert...Ch. 10 - Express the angular velocity of the second hand on...Ch. 10 - Rank the following in order of increasing angular...Ch. 10 - A spot of paint on a bicycle tire moves in a...Ch. 10 - The Crab Nebula One of the most studied objects in...Ch. 10 - BIO Hummingbird Flapping The Ruby-throated...Ch. 10 - The following table gives the angular speed of a...Ch. 10 - Four objects, a, b, c, and d have the initial...Ch. 10 - Predict/Calculate A 3.5-inch floppy disk in a...Ch. 10 - The angle an airplane propeller makes with the...Ch. 10 - An object at rest begins to rotate with a constant...Ch. 10 - An object at rest begins to rotate with a constant...Ch. 10 - The angular speed of a propeller on a boat...Ch. 10 - After fixing a flat tire on a bicycle you give the...Ch. 10 - Predict/Calculate A ceiling fan is rotating at 0...Ch. 10 - A discus thrower starts from rest and begins to...Ch. 10 - Half Time At 3:00 the hour hand and the minute...Ch. 10 - BIO A centrifuge is a common laboratory instrument...Ch. 10 - The Slowing Earth The Earth's rate of rotation is...Ch. 10 - When a carpenter shuts off his circular saw the...Ch. 10 - The Worlds Fastest Turbine The drill used by most...Ch. 10 - Predict/Explain Two children. Jason and Betsy ride...Ch. 10 - The hour hand on a certain clock is 8.2 cm long....Ch. 10 - The outer edge of a rotating Frisbee with a...Ch. 10 - A carousel at the local carnival rotates once...Ch. 10 - A chainsaw is shown in Figure 10-27. When the saw...Ch. 10 - Predict/Calculate Jeff of the Jungle swings on a...Ch. 10 - A compact disk, which has a diameter of 12.0 cm,...Ch. 10 - Predict/Calculate When a compact disk with a...Ch. 10 - Predict/Calculate As Tony the fisherman reels in a...Ch. 10 - A Ferns wheel with a radius of 9.5 m rotates at a...Ch. 10 - Suppose the Ferris wheel in the previous problem...Ch. 10 - To polish a filling a dentist attaches a sanding...Ch. 10 - The Bohr Atom The Bohr model or me hydrogen atom...Ch. 10 - A wheel of radius R starts from rest and...Ch. 10 - Microwave Tray Most microwave ovens nave a glass...Ch. 10 - The tires on a car have a radius of 31 cm. What is...Ch. 10 - A child pedals a tricycle, giving the driving...Ch. 10 - A soccer ball, which has a circumference of 70.0...Ch. 10 - You drive down the road at 31 m/s (70 mi/h) in a...Ch. 10 - The wheels of a skateboard roll without slipping...Ch. 10 - The page feed roller of a computer printer grips...Ch. 10 - As you drive down the road at 17 m/s, you press on...Ch. 10 - Predict/Explain The minute and hour hands of a...Ch. 10 - Predict/Explain Suppose a bicycle wheel is rotated...Ch. 10 - The moment of inertia of a 0.98-kg bicycle wheel...Ch. 10 - An electric fan spinning with an angular speed of...Ch. 10 - BIO Spin-Dry Dragonflies Some dragonflies splash...Ch. 10 - The L-shaped object in Figure 10-32 can be rotated...Ch. 10 - Predict/Calculate A 12-g CD with a radius of 6 0...Ch. 10 - The engine of a model airplane must both spin a...Ch. 10 - Flywheel Energy Storage One way to store energy is...Ch. 10 - When a pitcher throws a curve ball, the ball is...Ch. 10 - A lawn mower has a flat, rod shaped steel blade...Ch. 10 - Prob. 56PCECh. 10 - Suppose the block in Example 10-19 has a mass of...Ch. 10 - Calculate the speeds of (a) the disk and (b) the...Ch. 10 - Predict/Calculate Atwoods Machine The two masses...Ch. 10 - In Conceptual Example 10 18, assume the ball is a...Ch. 10 - Predict/Calculate After you pick up a spare, your...Ch. 10 - Predict/Calculate A 1 3-kg block is tied to a...Ch. 10 - After doing some exercises on the floor you are...Ch. 10 - A 2.0-kg solid cylinder (radius = 0.10 m, length =...Ch. 10 - A 2 5-kg solid sphere (radius = 0.10 m) is...Ch. 10 - CE As you switch a fan setting from its slowest...Ch. 10 - CE When you stand on the observation deck of the...Ch. 10 - What linear speed must a 0.065-kg hula hoop have...Ch. 10 - BIO Losing Consciousness A pilot performing a...Ch. 10 - The angular velocity of a rotating wheel as a...Ch. 10 - A 68-kg commuter rides on an 8.1 -kg bicycle. Each...Ch. 10 - CE Place two quarters on a table with their rims...Ch. 10 - CE The object shown in Figure 10-38 can be rotated...Ch. 10 - Predict/Calculate When the Hands Align A...Ch. 10 - BIO Spinning Dragonflies Measurements show that...Ch. 10 - Predict/Calculate A potters wheel of radius 6.8 cm...Ch. 10 - Predict/Calculate Playing a CD The record m an...Ch. 10 - BIO Roller Pigeons Pigeons are bred to display a...Ch. 10 - BIO Dolphin Tricks A bottlenose dolphin (Tursiops...Ch. 10 - As a marble with a diameter of 1 6 cm rolls down...Ch. 10 - A rubber ball with a radius of 3.2 cm rolls along...Ch. 10 - Predict/Calculate A yo-yo moves downward until it...Ch. 10 - Predict/Calculate (a) An automobile with tires or...Ch. 10 - A Yo-Yo with a Brain Yomega (The yo-yo with a...Ch. 10 - The rotor in a centrifuge has an initial angular...Ch. 10 - The Sun, with Earth in tow, orbits about the...Ch. 10 - A person walks into a room and switches on the...Ch. 10 - BIO Preventing Bone Loss in Space When astronauts...Ch. 10 - A thin, uniform rod of length L and mass M is...Ch. 10 - Center of Percussion In the previous problem,...Ch. 10 - A wooden plank rests on two soup cans laid on...Ch. 10 - A person rides on a 12-m-diameter Ferris wheel...Ch. 10 - Predict/Calculate A solid sphere with a diameter...Ch. 10 - BIO Human-Powered Centrifuge Space travel is...Ch. 10 - BIO Human-Powered Centrifuge Space travel is...Ch. 10 - BIO Human-Powered Centrifuge Space travel is...Ch. 10 - BIO Human-Powered Centrifuge Space travel is...Ch. 10 - Referring to Conceptual Example 10-17 Suppose we...Ch. 10 - Referring to Conceptual Example 10-17 Consider a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
20.29 A sample offield mice contains individuals that are, that are , and that are.
What are the frequencies o...
Genetic Analysis: An Integrated Approach (3rd Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk(*) desig...
Cosmic Perspective Fundamentals
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As a compact disc (CD) spins clockwise as seen from above,information is read from it, starting with the innermost ring andmoving outward. When the information is being read from theinnermost ring, the CDs angular speed is 0 = 52.4 rad /s. TheCD slows down so that when information is read from the outermost ring, = 20.9 rad /s. It takes 74 min 33 s to read themusic from a particular CD. Find the constant angular acceleration of the CD.arrow_forwardAngular Speed and Angular Acceleration (a) Find the angular speed of Earths rotation about its axis. (b) How does this rotation affect the shape of Earth?arrow_forwardWhile punting a football, a kicker rotates his leg about the hip joint. The moment of inertia of the leg is 3.75kg-m2 and its rotational kinetic energy is 175 J. (a) What is the angular velocity of the leg? (b) What is the velocity of tip of the punter's shoe if it is 1.05 m from the hip joint? (c) Explain how the football can be given a velocity greater than the tip of the shoe (necessary for a decent kick distance).arrow_forward
- A boy stands at the center of a platform that is rotating without friction at 1.0 rev/s. The boy holds weights as far from his body as possible. At this position the total moment of inertia of the boy, platform, and weights is 5.0kgm2 . The boy draws the weights in close to his body, thereby decreasing the total moment of inertia to 1.5kgm2 . (a) What Is the final angular velocity of the platform? (b) By how much does the rotational kinetic energy increase?arrow_forwardUnreasonable Results An advertisement claims that an 800-kg car is aided by its 20.0-kg flywheel, which can accelerate the car from rest to a speed of 30.0 m/s. The flywheel is a disk with a 0.150-m radius. (a) Calculate the angular velocity the flywheel must have if 95.0% of its rotational energy is used to get the car up to speed. (b) What is unreasonable about the result? (c) Which premise is unreasonable or which premises are inconsistent?arrow_forwardProblems 62 and 63 are paired. 62. C A disk is rotating around a fixed axis that passes through its center and is perpendicular to the face of the disk. Consider a point on the rim of the disk (point R) and another point halfway between the center and the rim (point H) at one particular instant. a. How does the angular speed v of the disk at point H compare with the angular speed of the disk at point R? b. How does the tangential speed of the disk at point H compare with the tangential speed of the disk at point R? c. Suppose we pick a point H on the disk at random (by throwing a dart, for example), and we compare the speeds at that point with the speeds at point R. How will the answers to parts (a) and (b) be different? Explain.arrow_forward
- As a result of friction, the angular speed of a whorl changes with time according to ddt=et where 0 and are constants, The angular speed changes from 3.50 rad/s at t = 0 to 2.00 rad/s at t = 9.30 s. (a) Use this information to determine and 0. Then determine (b) the magnitude of the angular acceleration at t = 3.00 s, (c) the number of revolutions the wheel makes in the first 2.50 s, and (d) the number of revolutions it makes before coming to rest.arrow_forwardEveryday application: Suppose a yo-yo has a center shaft that has a 0.250 cm radius and that its string is being pulled. (a) If the string is stationary and the yo-yo accelerates away from it at a rate of 1.50 m/s2, what is the angular acceleration of the yo-yo? (b) What is the angular velocity after 0.750 s if it starts from rest? (c) The outside radius of the yo-yo is 3.50 cm. What is the tangential acceleration of a point on its edge?arrow_forwardA cat usually lands on its feet regardless of the position from which it is dropped. A slow-motion film of a cat falling shows that the upper half of its body twists in one direction while the lower half twists in the opposite direction. (See Fig. CQ11.10.) Why does this type of rotation occur?arrow_forward
- The angular position of a rod varies as 20.0t2radians from time t=0 . The rod has two beads on it as shown in the following figure, one at 10 cm from the ratation axis and the other at 20 cm from the rotation axis. (a) What is the instantaneous angular velocity of the rod at t=5s ? (b) What is the angular acceleration of the rod? (c) What are the tangential speeds of the beads at t=5s ? (d) What are the tangential acceleration of the beads at t=5s ? (e) What are the centripetal accelerations of the beads at t=5s ?arrow_forwardFour objectsa hoop, a solid cylinder, a solid sphere, and a thin, spherical shelleach have a mass of 4.80 kg and a radius of 0.230 m. (a) Find the moment of inertia for each object as it rotates about the axes shown in Table 8.1. (b) Suppose each object is rolled down a ramp. Rank the translational speed of each object from highest to lowest, (c) Rank the objects rotational kinetic energies from highest to lowest as the objects roll down the ramp.arrow_forwardSuppose the change in angular position for each of the pairs of values in Quick Quiz 7.1 occurred in 1 s. Which choice represents the lowest average angular velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Rotational Kinetic Energy; Author: AK LECTURES;https://www.youtube.com/watch?v=s5P3DGdyimI;License: Standard YouTube License, CC-BY