Concept explainers
(a)
Interpretation:
The change in the pressure
Concept introduction:
Boyle’s law which relates pressure and temperature states that when temperature is kept constant for a gas then the pressure and temperature follows the inverse relation. According to Boyle’s law, relation between pressure and volume is written below.
Answer to Problem 11E
The pressure decreases with increase in volume from
Explanation of Solution
According to the equation of Boyle’s law if volume is increased for a particular or constant temperature then the pressure of the gas will be decreased to keep the
Where,
•
•
•
•
•
The given values of the initial volume
Substitute the values of
Therefore, decrease in pressure is
The pressure decreases by the factor of
(b)
Interpretation:
Change in the pressure
Concept introduction:
Gay Lussac’s law one of the
Answer to Problem 11E
The pressure
Explanation of Solution
The relation given by Gay Lussac’s for the gaseous molecule is stated below.
Where,
•
•
•
•
•
Ratio of pressure and temperature is constant. Pressure will be increased with the increase in value of temperature to keep the ratio
Conversion of initial temperature
Conversion of final temperature
Substitute the value of
Therefore, the pressure will increase in the container.
Increase in pressure
(c)
Interpretation:
The change in the pressure
Concept introduction:
Answer to Problem 11E
Increase in pressure
Explanation of Solution
The relation given by all the variables of a gas is stated as below.
According to the relation given above pressure is directly proportional to the number of moles. Pressure will be decreased with the decrease in number of moles to maintain the gas law when all other variables are kept constant.
Gas law is written below.
Where,
•
•
•
•
•
•
•
The number of moles,
The number of moles,
Substitute the given values of
Therefore, the pressure will increase in the container.
The pressure will increase in the container.
Want to see more full solutions like this?
Chapter 10 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co