
Concept explainers
(a)
Interpretation:
Balanced equation for the complete combustion of pentane has to be written.
Concept Introduction:
Combustion reaction in general is said to be burning in presence of oxygen.
(a)

Explanation of Solution
Given hydrocarbon is pentane. Molecular formula of pentane is
Balancing carbon atom: In the product side, only one mol of carbon atom is present while in the reactant side, five mol of carbon atoms are present. This can be balanced by adding coefficient 5 before
Balancing hydrogen atoms: In the product side, there are two mol of hydrogen atoms, while in the reactant side, there are twelve mol hydrogen atoms. Adding coefficient 6 before water in the product side balances out hydrogen atoms on both sides of equation. The chemical equation obtained is,
Balancing oxygen atoms: In the product side, there are sixteen mol oxygen atoms, while in the reactant side, there are only two mol oxygen atoms. Adding coefficient 8 before
(b)
Interpretation:
Balanced equation for the complete combustion of hexane has to be written.
Concept Introduction:
Refer part (a).
(b)

Explanation of Solution
Given hydrocarbon is hexane. Molecular formula of hexane is
Balancing carbon atom: In the product side, only one mol of carbon atom is present while in the reactant side, six mol of carbon atoms are present. This can be balanced by adding coefficient 6 before
Balancing hydrogen atoms: In the product side, there are two mol of hydrogen atoms, while in the reactant side, there are fourteen mol hydrogen atoms. Adding coefficient 7 before water in the product side balances out hydrogen atoms on both sides of equation. The chemical equation obtained is,
Balancing oxygen atoms: In the product side, there are nineteen mol oxygen atoms, while in the reactant side, there are only two mol oxygen atoms. Adding coefficient 9.5 before
Multiplying the above equation by 2 gives whole numbers for all the compounds. This can be given as,
(c)
Interpretation:
Balanced equation for the complete combustion of octane has to be written.
Concept Introduction:
Refer part (a).
(c)

Explanation of Solution
Given hydrocarbon is octane. Molecular formula of octane is
Balancing carbon atom: In the product side, only one mol of carbon atom is present while in the reactant side, eight mol of carbon atoms are present. This can be balanced by adding coefficient 8 before
Balancing hydrogen atoms: In the product side, there are two mol of hydrogen atoms, while in the reactant side, there are eighteen mol hydrogen atoms. Adding coefficient 9 before water in the product side balances out hydrogen atoms on both sides of equation. The chemical equation obtained is,
Balancing oxygen atoms: In the product side, there are twenty five mol oxygen atoms, while in the reactant side, there are only two mol oxygen atoms. Adding coefficient 12.5 before
Multiplying the above equation by 2 gives whole numbers for all the compounds. This can be given as,
(d)
Interpretation:
Balanced equation for the complete combustion of ethane has to be written.
Concept Introduction:
Refer part (a).
(d)

Explanation of Solution
Given hydrocarbon is ethane. Molecular formula of ethane is
Balancing carbon atom: In the product side, only one mol of carbon atom is present while in the reactant side, two mol of carbon atoms are present. This can be balanced by adding coefficient 2 before
Balancing hydrogen atoms: In the product side, there are two mol of hydrogen atoms, while in the reactant side, there are six mol hydrogen atoms. Adding coefficient 3 before water in the product side balances out hydrogen atoms on both sides of equation. The chemical equation obtained is,
Balancing oxygen atoms: In the product side, there are seven mol oxygen atoms, while in the reactant side, there are only two mol oxygen atoms. Adding coefficient 3.5 before
Multiplying the above equation by 2 gives whole numbers for all the compounds. This can be given as,
Want to see more full solutions like this?
Chapter 10 Solutions
Connect 1-Semester Access Card for General, Organic, and Biochemistry
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





