
Concept explainers
(a)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(b)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(c)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.
(d)
Interpretation: In the pair of
Concept Introduction:
Ionization energy is the energy required to remove an electron from an isolated gaseous atom or ion.
The first or initial ionization energy is the energy required to remove one mole of electron from the one of an isolated gaseous atom or ion.
Trends of ionization energy:
It is well known that bonding molecular orbitals have lower energy than the atomic orbitals whereas anti-bonding molecular orbitals have higher energy than the atomic orbitals. So the electrons in the bonding molecular orbitals will be more stabilized than that in the anti-bonding molecular orbitals. Thus the first ionization energy will be higher for removing one mole of electron from the bonding molecular orbital and it will be lower for removing one mole of electron from the anti-bonding molecular orbital.

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
General Chemistry
- Choose the major product of the reaction with correct regio- and stereochemistry. Br2 H₂O O "Br Br & O 'Br OH Br 吡 O OH OH Br "OH Brarrow_forwardSelect the major product of the following reaction. & Br (CH)CONa (CH₂),COH 0 OC(CH) O &arrow_forwardDraw the products of the hydrolysis reaction between the ester molecule and water. Determine the products of the following reaction.arrow_forward
- What is the unsaturation number for compounds with the formula C₂H₁₂Cl₂? O õ õ o o 4 3arrow_forwardIndicate the product obtained (formula). F3C. CF3 Br NH2 NH OMe K2CO3, DABCO, DMFarrow_forwardWhat are the missing intermediates 1, 2, and 3? Please include a detailed explanation explaining the steps of malonic ester synthesis. Please include drawings of the intermediates and how they occur.arrow_forward
- The following intermediates are to proceed by acetoacetic ester synthesis. What are intermediates 1 and 2 plus the final product 3? Please include a detailed explanation and drawings of the intermediates and how they occurred.arrow_forwardThe chemical formula of "benzimidazole E" is C7H6N2. Draw it.arrow_forwardBriefly comment (without formulas) on the steps of the aldol condensation mechanism in acidic and basic media.arrow_forward
- The following intermediates are to proceed by acetoacetic ester synthesis. What are intermediates 1 and 2 plus the final product 3? Please include a detailed explanation and drawings of the intermediates and how they occurred.arrow_forwardWhat are the missing intermediates 1, 2, and 3? Please include a detailed explanation explaining the steps of malonic ester synthesis. Please include drawings of the intermediates and how they occur.arrow_forwardWhat is the reactant that makes the following product of the reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





